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a b s t r a c t

Neural network has been applied in several classification problems such as in medical diagnosis, hand-

writing recognition, and product inspection, with a good classification performance. The performance of

a neural network is characterized by the neural network’s structure, transfer function, and learning algo-

rithm. However, a neural network classifier tends to be weak if it uses an inappropriate structure. The

neural network’s structure depends on the complexity of the relationship between the input and the

output. There are no exact rules that can be used to determine the neural network’s structure. Therefore,

studies in improving neural network classification performance without changing the neural network’s

structure is a challenging issue. This paper proposes a method to improve neural network classification

performance by constructing a linear model based on the Kalman filter as a post processing. The linear

model transforms the predicted output of the neural network to a value close to the desired output by

using the linear combination of the object features and the predicted output. This simple transformation

will reduce the error of neural network and improve classification performance. The Kalman filter iter-

ation is used to estimate the parameters of the linear model. Five datasets from various domains with

various characteristics, such as attribute types, the number of attributes, the number of samples, and the

number of classes, were used for empirical validation. The validation results show that the linear model

based on the Kalman filter can improve the performance of the original neural network.

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

The classification problem is the problem of assigning an ob-

ject into one of predefined classes based on a number of fea-

tures or attributes extracted from the object (Zhang, 2000). In ma-

chine learning, classification is categorized as a supervised learn-

ing method. A classifier is constructed based on a training set with

known class labels (Alpaydin, 2010). Classification problems occur

in various real world problems, including problems in character

recognition (Gao & Liu, 2008), face recognition (Zhifeng, Dahua, &

Xiaoou, 2009), speech recognition (Chandaka, Chatterjee, & Mun-

shi, 2009), biometrics (Lyle, Miller, Pundlik, & Woodard, 2012),
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edical diagnosis (Akay, 2009; Mazurowski et al., 2008; Verma &

hang, 2007), industry (Jamil, Mohamed, & Abdullah, 2009; Kılıç,

oyacı, Köksel, & Küsmenoğlu, 2007; Nashat, Abdullah, & Abdul-

ah, 2014; Rocha, Hauagge, Wainer, & Goldenstein, 2010), business

Chen & Huang, 2003; Huang, Chen, & Wang, 2007; Min & Lee,

005), and science (Evett & Spiehler, 1987; Sigillito, Wing, Hut-

on, & Baker., 1989). Several classification algorithms have been

roposed to solve classification problems, namely decision tree

Quinlan, 1986), linear discriminant analysis (Li & Yuan, 2005),

ayesian classifier (Domingos & Pazzani, 1997), rule-based classi-

er (Clark & Niblett, 1989), neural network (Lippmann, 1987), k-

earest neighbor (Cover & Hart, 1967), and support vector machine

Cortes & Vapnik, 1995).

Artificial neural network or simply neural network is a com-

utational model inspired by the biological nervous system. Neu-

al network is a nonlinear model, which is very simple in com-

utation and has the capability to solve complex real problems

ncluding prediction and classification. Neural network has ap-

ears to be a significant classification method and an alternative to
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onventional classification methods (Zhang, 2000). It has been ap-

lied in various prediction and classification problems, such as

ankruptcy prediction (Tsai & Wu, 2008), handwriting recognition

Goh, Mital, & Babri, 1997), product inspection (Kılıç et al., 2007),

edical diagnosis (Mazurowski et al., 2008), and transportation

Garrido, de Oña, & de Oña, 2014).

The performance of a neural network is characterized by its

tructure, transfer function, and learning algorithm (Lippmann,

987). The structure of a neural network depends on the num-

er of hidden layers and the number of neurons in each hidden

ayer. However, there is no exact rule to determine the structure

f a neural network. Generally, the more complex the relationship

etween the input data and the desired output, the more com-

lex the structure of the neural network used in classification (Du

Sun, 2008). Therefore, a neural network classifier tends to be a

eak classifier if it uses a structure that has an inappropriate num-

er of hidden layers or an inappropriate number of neurons in its

idden layers. Although research on neural network classifiers has

een widely conducted with significant results, it is still a chal-

enging task, especially in research related to improving classifica-

ion performance.

The ensemble method is a well-known method to improve the

lassification performance of a neural network by combining a se-

ies of trained neural networks (Giacinto & Roli, 2001; Glodek,

euter, Schels, Dietmayer, & Schwenker, 2013; Zaamout & Zhang,

012). However, if the outputs of each neural network are biased

r correlated, then there is no guarantee that ensemble can im-

rove the classification performance of the neural network (Zhang,

000). Feature selection is another issue in improving classifica-

ion performance. Feature selection aims to find a subset of fea-

ures that achieves maximum classification performance and re-

uces computation effort. Various feature selection methods have

een developed for neural network classifiers. One such method

as used a genetic algorithm to select salient features (Li, 2006;

erma & Zhang, 2007). However, employing feature selection on

neural network classifier does not always improve classification

erformance, as reported in T.-S. Li (2006).

Improving classification performance is a promising issue, not

nly for neural network classifiers but also for other classifiers.

ocha et al. (2010) proposed classifier fusion for improving fruit

nd vegetable classification accuracy. They employed a combina-

ion of fusion of binary classifiers and a very long feature descrip-

or, including global color histogram (GCH), Unser’s descriptors,

olor coherence vectors (CCVs), Border/Interior pixel Classification

BIC), and appearance descriptors. Although high classification ac-

uracy is achieved, it takes significant time to perform the training

tage. Mastrogiannis, Boutsinas, and Giannikos (2009) proposed

he use of the ELECTRE methods concepts to improve the accuracy

f data mining classification algorithms. Even if the proposed

ethod can improve classification accuracy of several data mining

lgorithms, it can be applied to classify only categorical objects.

acibeyoglu, Arslan, and Kahramanli (2011) analyzed the effect

f discretization on classification. This method used entropy-

ased discretization to transform continuous-valued features into

nteger-valued features. Therefore, it cannot be applied to classify

bjects with only categorical- or integer-valued features.

In recent years, several authors tried to combine several tech-

iques to improve classification performance. Farid, Zhang, Rah-

an, Hossain, and Strachan (2014) have proposed two hybrid al-

orithms of decision tree (DT) and naïve Bayes (NB) classifiers for

ulti-class classification. The first algorithm used NB to remove

isclassified instances from training dataset before used to build

T. The second algorithm used DT to find a subset of attributes

hat play important roles in classification. Selected attributes by DT

ere then used for classification using NB. Seera and Lim (2014)

ave used Fuzzy Min–Max (FMM) neural network, classification
nd regression tree (CART), and random forest (RF) model to de-

elop a hybrid intelligent system for medical data classification.

MM neural network was used to generate hyperbox fuzzy set.

he generated hyperbox was then used to build CART. Finally, to

ncrease classification performance an ensemble of CART was con-

tructed using RF. Affonso, Sassi, and Barreiros (2015) have com-

ined rough sets theory and fuzzy neural network for biological

mage classification. They used rough sets theory for feature selec-

ion. The selected features were used to train a multilayer percep-

ron neuro fuzzy network. Onan (2015) have proposed the com-

ination of instance selection, feature selection, and fuzzy-rough

earest neighbor for automated diagnosis of breast cancer. Fuzzy-

ough instance selection method was used to remove useless or

rroneous instances from dataset, while consistency-based feature

election method and a re-ranking algorithm were used to select

mportant feature. Pruengkarn, Chun Che, and Kok Wai (2015) have

sed clustering technique, feature selection, and ensemble of clas-

ifier to improve classification performance. Clustering technique

as employed to separate dataset into misclassification dataset

nd clean dataset. The clean dataset was classified using a com-

on classifier including DT, NB, ANN, and SVM. Whereas feature

election technique based on fuzzy C-means and ensemble of clas-

ifier using majority voting were used to classify misclassification

ataset. Although all authors reported achieving high classification

ccuracy, they did not report the computing time for the proposed

ethods.

A neural network classifier achieves high classification accu-

acy when its predicted output is very close to its desired out-

ut. Therefore, to increase neural network classification accuracy,

he use of a transformation that transforms the predicted output

f a neural network to a value close to the desired output can be

onsidered as a post processing. A linear model is a simple trans-

ormation that can be used to achieve such a purpose. The linear

odel consists of independent (input) variables, dependent (out-

ut) variables, and unknown parameters. The parameters of a lin-

ar model need to be estimated such that the error between the

redicted output and the desired output is minimized. The Kalman

lter (Kalman, 1960) is a method that can be used to estimate

he parameters of a linear model. The Kalman filter is a recursive

ethod for fitting a linear model to a given dataset such that the

um of square error is minimized without performing matrix in-

ersion as in ordinary least square. Even if the model has a num-

er of variables greater than the number of dataset elements, the

alman filter can still calculate the estimate (Wu, Rutan, Baldovin,

Massart, 1996).

This paper proposes a method to improve neural network clas-

ification performance by constructing a linear model based on the

alman filter. The proposed method uses the Kalman filter itera-

ion to estimate the parameters of a linear model. The model uses

he linear combination of object features and predicted outputs of

neural network as input variables to predict class labels. As in a

eural network, the model can use any type of variables as input.

herefore, the model would improve neural network classification

erformance without considering the types of object features.

The rest of the paper is organized as follows. Sections 2 and

provide a brief explanation about the structure of neural net-

ork and Kalman filter, respectively. Section 4 explains the pro-

osed method. Section 5 describes datasets and method used for

alidation. Section 6 presents experimental results and discussion.

nd finally, conclusion and future work are provided in Section 7.

. Neural network

The neural network model consists of interconnected neu-

ons with weights, arranged in layers. The structure of a neu-

on consists of inputs p , p , . . . , pn, weights w , w , . . . , wn, bias b,
1 2 1 2
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Fig. 1. The structure of a neuron: p1, p2, … pn are inputs, w1, w2, … wn are weights,

b is bias, S is the sum of weighted inputs and bias, f is transfer function, and a is

output.

Input layer Hidden layers Output layer

Fig. 2. The general topology of a neural network consists of an input layer, two

hidden layers, and an output layer.
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transfer function f, and output a as shown in Fig. 1. The neuron

inputs come from the environment or other neurons in the pre-

vious layer. All weighted inputs and biases are summed and the

result is passed through the transfer function to generate output,

as in Eqs. (1) and (2). The output is then sent to other neurons in

the next layer as input. The transfer functions commonly used in

neural network are the linear function, the step function, and the

sigmoid function (Demuth, Beale, & Hagan, 2006).

S =
n∑

i=1

wi pi + b (1)

a = f (S) (2)

The general topology of a neural network consists of an input

layer, one or more hidden layers, and an output layer, as shown

in Fig. 2. The input layer corresponds to object features that are

used to classify objects. The output layer corresponds to an ob-

ject class in the case of classification or a prediction value in the

case of prediction. The hidden layers are located between the input

layer and the output layer. A neural network can have one or more

hidden layers. The number of hidden layers and their neurons de-

pend on the complexity of the relationship between the input and

the output. The hidden layers are constructed for the learning pro-

cess by computation on neurons and weights. The weights and bi-

ases are adaptively adjusted during neural network training using

a learning algorithm and training data until the weights converge

(Du & Sun, 2008). The weights converge if the error between the

predicted output and the desired output for all elements of train-

ing data reaches a minimum value. The common criteria used to

measure the error between the predicted output and the desired

output is the mean square error (MSE) (Zhang, 2000). The MSE of

estimator ẑ is defined as the average of square difference between

ẑ and desired output z as in Eq. (3),

MSE = 1

K × M

K∑
i=1

∥∥ẑi − zi

∥∥2
(3)

where K is the number of sample in training data, M is the number

of neural network output, ‖ . ‖ is Euclidean norm, ẑ is predicted

output and z is desired output.
. Kalman filter

The Kalman filter was proposed by Kalman (1960) to solve the

iener problem from the system state point of view. It has been

pplied in many areas including control systems, tracking, naviga-

ion, and estimation (Yeh & Huang, 2005). Generally, the Kalman

lter is used to estimate the state of a linear dynamical system

ased on information from a measurement, which is linearly re-

ated to the state (Grewal & Andrews, 2008). Suppose x ∈ Rn is

he state of a discrete controlled linear system and z ∈ Rl is the

easurement. At time k the state and the measurement satisfy the

rocess equation as in Eq. (4) and the measurement equation as in

q. (5), respectively.

k = Akxk−1 + Bkuk + wk (4)

k = Hkxk + vk (5)

here xk is the state at time k, uk ∈ Rm is the control input at time

, zk is the measurement at time k. Ak is n × n matrix that relates

he state at time k − 1 and the state at time k, Bk is n × m matrix

hat relates the control input at time k and the state at time k, Hk

s l × n matrix that relates the state and the measurement at time

; wk and vk are process and measurement noise, respectively, that

re assumed to be normal random variables with a mean of 0 and

ovariance matrices of Qk and Rk, respectively.

In the state estimation, the Kalman filter consists of two phases,

hich are the predict phase and the update phase. In the predict

hase, the Kalman filter uses information from the previous state

o estimate the a priori current state. The a priori current state es-

imation is then updated using information from the measurement

o produce the a posteriori current state estimation in the update

hase. The predict phase and the update phase are performed us-

ng Eqs. (6)–(10), respectively (Welch & Bishop, 2006).

redict phase:

ˆ−
k

= Akx̂k−1 + Bkuk (6)

−
k

= AkPk−1AT
k + Qk (7)

pdate phase:

k = P−
k

HT
k

(
HkP−

k
HT

k + Rk

)−1
(8)

ˆk = x̂−
k

+ Kk

(
zk − Hkx̂−

k

)
(9)

k = (I − KkHk)P−
k

(10)

here x̂−
k

∈ Rn is the a priori state estimation at time k, n × n ma-

rices P−
k

and Pk are the a priori and the a posteriori estimation er-

or covariance, respectively, and the n × l matrix Kk is the Kalman

ain.

. Proposed method

Suppose a trained neural network is used to classify an object

nto one of M classes as in Fig. 3(a). The input layer of the neural

etwork consists of N neurons that correspond to object features

f1, f2, . . . , fN and the output layer consists of M neurons that cor-

espond to desired output (class label) z1, z2, . . . , zM , where

i =
{

1, if the object belong to class ci

0, otherwise
, i = 1, 2, . . . , M.

et z̃1, z̃2, . . . , z̃M be the predicted output of the neural network,

he values of z̃i is expected close to zi for all i = 1, 2, . . . , M to en-

ure the object is correctly classified. The proposed method, called
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Fig. 3. The combinations (c) of neural network (a) and LMKF (b). LMKF uses the predicted output of neural network z̃1, z̃2, . . . , z̃M and object features as input f1, f2, . . . , fN

to estimate class label.
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eural network combined with linear model based on Kalman fil-

er (NN-LMKF), is the combination of a neural network classifier

Fig. 3(a)) and a linear model (Fig. 3(b)) based on the Kalman filter

LMKF), as depicted in Fig. 3(c). The LMKF can be considered to be

post processing of the neural network classifier to increase classi-

cation performance. The parameters of LMKF are estimated using

he Kalman filter iteration. The LMKF uses the predicted output of

he neural network and the object features as input to estimate the

lass label.

The proposed method consists of two main phases, which are

he training phase and the testing phase. The steps in the training

hase are as follows: train the neural network, predict the output

f the neural network for the objects in the training set, classify

he objects in the training set using the neural network output,

alculate the classification accuracy of the neural network classi-

er, construct the linear model, estimate the LMKF parameters us-

ng the Kalman filter, predict the output of the NN-LMKF, classify

he objects in the training set using the NN-LMKF output, and cal-

ulate the classification accuracy of the NN-LMKF. For the testing

hase, the steps consist of predicting the output of the NN-LMKF

nd classifying the objects using the NN-LMKF output. Fig. 4 shows

he flowchart of the proposed method for the training phase and

he testing phase.

.1. Linear model construction

The LMKF is constructed to adjust the predicted output of

he neural network such that the classification accuracy is in-

reased by using the linear combination of object features. There-

ore, the independent variables of the LMKF consist of object fea-

ures f1, f2, . . . , fN and predicted outputs of the neural network

˜1, z̃2, . . . , z̃M while the dependent variables are the desired out-

utsz1, z2, . . . , zM . In addition, it is assumed that the model has a

ormally distributed error term with mean 0 and covariance ma-

rix R, as formulated in Eq. (11):

= Az̃ + Bf + v. (11)

x =
[
a11 a22 · · · aMM b11 b12 ·
here z = [z1 z2 . . . zM]T , z̃ = [z̃1 z̃2 . . . z̃M]T , f =
f1 f2 . . . fN]T , A is M × Mdiagonal matrix as in

q. (12), B is M × N matrix with element as in Eq. (13), and

is the error term. Matrices A and B are unknown parameters for

he linear model.

= diag
[
a11 a22 · · · aMM

]
(12)

=

⎡
⎢⎢⎣

b11 b12 · · · b1N

b21 b22 · · · b2N

...
...

. . .
...

bM1 bM2 · · · bMN

⎤
⎥⎥⎦ (13)

To estimate the parameters of the linear model in Eq. (11) us-

ng the Kalman filter, the process and the measurement equations

or the system need to be defined first. The state of the system is

efined as a vector x whose elements consist of the diagonal ele-

ents of matrix A and all elements of matrix B, as in Eq. (14):

b1N · · · bM1 bM2 · · · bMN

]T
. (14)

ecause the parameters of the linear model in Eq. (11) are con-

tant values, the state does not change from time to time. It is

ssumed that the state is only perturbed by white noise. Further-

ore, there is no control input for the system. Therefore, the dy-

amics of the system can be expressed as a stationary process per-

urbed by white noise and the state equation at time k is defined

n Eq. (15):

k = xk−1 + wk, (15)

here wk is state noise that is assumed to be a normal random

ariable with mean 0 and covariance matrix Q.

The linear model in Eq. (11) is used as the measurement equa-

ion with a slight modification as in Eq. (16),

k = Hkxk + vk (16)

here H = ∂z/∂x is the Jacobian matrix of z whose elements are

ll first order partial derivatives of z with respect to all elements
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Fig. 4. The flowchart of proposed method for the training phase (left) and the testing phase (right).
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of x. Therefore, the elements of H consist of the elements of z̃ and

f, and 0 s, as in Eq. (17):

H =

⎡
⎢⎢⎣

z̃1 0 · · · 0 f1 f2 · · · fN f 0 0 · · ·
0 z̃2 · · · 0 0 0 · · · 0 f1 f2 · · ·
...

...
. . .

...
...

...
. . .

...
...

...
. . .

0 0 · · · z̃M 0 0 · · · 0 0 0 · · ·

4.2. Parameter estimation using the Kalman filter

Based on the process equation in Eq.(15), the measurement

equation in Eq. (16), and Eqs. (6)–(10), the predict and update

phases in the Kalman filter iteration are performed using Eqs. (18)–

(22):

Predict phase:

x̂−
k

= x̂k−1 (18)

P−
k

= Pk−1 + Q (19)

Update phase:

Kk = P−
k

HT
k

(
HkP−

k
HT

k + R
)−1

(20)

x̂k = x̂−
k

+ Kk

(
zk − Hkx̂−

k

)
(21)

Pk = (I − KkHk)P−
k

(22)
· · · 0 0 · · · 0
· · · 0 0 · · · 0

· · ·
...

... · · ·
...

· · · f1 f2 · · · fN

⎤
⎥⎥⎦. (17)

Before performing the Kalman filter iteration, the values of Q, R,

ˆ0 and P0 should first be assigned. Because there is no information

bout the values of Q and R, the proposed method assumes that Q

nd R are scalar matrices in the form Q = qI and R = rI, where q

nd r are positive real numbers. The values of q and r are chosen

uch that the classification accuracy is increased after applying the

N-LMKF to the training data. Furthermore, x̂0 = 0 and P0 = I are

hosen as the initial values of x and P, respectively. The iteration is

erformed using the entire training data set until the convergence

riteria are satisfied. The convergence criterion for the Kalman fil-

er iteration is chosen from one of the following criteria:

• Small mean square error (MSE): MSE < ɛ1
• Stable state: ‖x̂k − x̂k−1‖ < ε2

• Exceeds the maximum epoch

here ɛ1 and ɛ2 are small positive real number, and MSE is calcu-

ated using Eq. (3).

Once the parameter estimation is completed, the NN-LMKF is

hen used to estimate the desired output (class label) z of the ob-

ect in the testing set based on object features f1, f2, . . . , fN and

he predicted output of the neural network, z̃1, z̃2, . . . , z̃M . The esti-

ator ẑ is used to classify the object, the object belongs to class c
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Table 1

The summary of datasets used in validation.

Dataset name Attribute type Number of attribute Number of sample Number of class

Glass identification Real 10 214 2

Iris Real 4 150 3

Statlog (Vehicle Silhouettes) Integer 18 846 4

Statlog (Australian Credit Approval) Categorical, real 14 690 2

Statlog (Heart) Categorical, integer, real 13 270 2

Algorithm 1 Algorithm to perform the parameter estimation of LMKF

INPUT: Training set Tr = {f1, f2, . . . , fK}, desired output{z1, z2, . . . , zK},

convergence criteria ε and maxEpoch, covariance matrix Q and R.

OUTPUT: LMKF parameters estimator x̂

Train neural network using Tr

FOR j FROM 1 TO K

Predict output of neural network z̃ j = PredictNN(f j )

END FOR

Classify every object in Tr using neural network output

Calculate classification accuracy of neural network AccNN

Set classification accuracy of NN-LNKF AccNN−LNKF = 0

WHILE AccNN ≤ AccNN−LNKF

INPUT covariance matrix of state Q = qI

INPUT covariance matrix of measurement R = rI

Set initial value of state x̂0 = 0

Set initial value of covariance matrix of state P0 = I

FOR i FROM 1 TO maxEpoch

FOR k FROM 1 TO K

Calculate Hk from z̃k and fk

Calculate x̂−
k

= x̂k−1

Calculate P−
k

= Pk−1 + Q

Calculate Kk = P−
k

HT
k
(HkP−

k
HT

k
+ R)−1

Calculate x̂k = x̂−
k

+ Kk(zk − Hkx̂−
k
)

Calculate Pk = (I − KkHk)P−
k

END FOR

FOR k FROM 1 TO K

Predict output of NN-LNKF ẑk = Hkx̂k

END FOR

Calculate MSE

IF MSE < ɛTHEN

Break

END IF

END FOR

Classify every object in Tr using NN-LMKF output

Calculate classification accuracy of NN-LMKF AccNN−LNKF

END WHILE
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f ẑi = max{ẑ1, ẑ2, . . . , ẑM}. The steps for the parameter estimation

f LMKF are summarized in Algorithm 1.

. Empirical validation

.1. Datasets

The proposed method was validated using five datasets from

he UCI Machine Learning Repository (Bache & Lichman, 2013).

he datasets were chosen from various domains with various char-

cteristics, such as attribute types, the number of attributes, the

umber of samples, and the number of classes, as summarized in

able 1. The datasets used for validation included Glass Identifica-

ion dataset, Iris dataset, Statlog (Vehicle Silhouettes) dataset, Stat-

og (Australian Credit Approval) dataset, and Statlog (Heart) dataset

ith the following characteristics:

1. Glass Identification dataset belongs to the Forensic Science do-

main and is used to identify types of glass (Evett & Spiehler,

1987). This dataset consist of 214 samples (163 window glasses

and 51 non-window glasses) with 10 attributes including object

Id. All attributes are real valued.

2. Iris dataset is a famous dataset found in the pattern recognition

literature (Duda & Hart, 1973). This dataset consists of 150 sam-
ples (50 Iris Setosa, 50 Iris Versicolour, 50 Iris Virginica) with

four real valued attributes.

3. Statlog (Vehicle Silhouettes) dataset is used to recognize 3D ob-

jects (vehicle) using shape features extracted from the 2D sil-

houette of the object (Siebert, 1987). This dataset consists of

846 samples from four classes (212 opel, 217 saab, 218 bus, 199

van) with 18 integer attributes.

4. Statlog (Australian Credit Approval) dataset is used to classify

credit card applicants (Bache & Lichman, 2013). This dataset

consists of 690 samples (307 first class and 383 second class)

with a good mix of attributes (14 attributes: real and categori-

cal). There are a few missing values in this dataset. The missing

values were replaced with the mean and mode of the attribute

for real valued and categorical attribute, respectively.

5. Statlog (Heart) dataset is used in the diagnosis of heart disease

(Bache & Lichman, 2013). This dataset consists of 270 samples

(150 without heart disease and 120 with heart disease) with 13

attributes (real, integer, and categorical).

.2. Validation method

Random subsampling was used to evaluate the classification

erformance of the proposed method. Each dataset was randomly

ortioned into two mutually exclusive sets, a training set, on which

he training phase was performed, and a testing set, on which

he testing phase was performed. Ten training sets and ten testing

ets were made by randomly selecting objects from each original

ataset. The training set and the testing set were constructed in

he following manner:

• 50% of the objects were randomly selected from the original

dataset as the training set and the rest were selected as the

testing set.
• The proportions of classes in each training set were equal to

the proportions of classes in each testing set.

ach training set was used to train the neural network and to esti-

ate the parameters of the LMKF using the Kalman filter iteration,

nd the testing set was used to validate the proposed method.

The architecture of neural network used in this validation con-

isted of an input layer with N neurons, a hidden layer with

(N + M)/2� neurons, and an output layer with M neurons, where

x� is the largest integer less than or equal to x. The tangent sig-

oid function tanh(x), as in Eq. (23), was used as the transfer func-

ion both from the input layer to the hidden layer and from the

idden layer to the output layer. The neural network was trained

sing the Levenberg–Marquardt backpropagation algorithm.

anh (x) = ex − e−x

ex + e−x
(23)

The classification accuracy for a particular dataset was obtained

y calculating the average of the classification accuracies on ten

esting sets both for the original neural network and the proposed

ethod. The classification accuracy was calculated using Eq. (24)
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Fig. 5. The effect of choosing inappropriate matrix R = rI to the dynamic of system: choosing too small an r value results in early achievement of a steady state (a), while

choosing too large an r value results in slow movement of the state (b).

Table 2

The values of r used in estimating LMKF parameters for all datasets.

Dataset name The values of r

Glass identification 105

Iris 103, 104, 105, 106

Statlog (Vehicle Silhouettes) 105, 106

Statlog (Australian Credit Approval) 8×105, 106, 2×106, 3×106, 107

Statlog (Heart) 3×106, 5×106, 6×106, 107, 1.2×107, 2×107, 4×107, 5×107
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(Hacibeyoglu et al., 2011):

Classification accuracy

= the number of objectscorrectly classified

total number of objects
× 100%. (24)

Finally, the improvement of the classification accuracy ψ for all

datasets used for validation was calculated using Eq. (25):

ψ =
∑D

i=1 ϕiNi∑D
i=1 Ni

. (25)

Where D is the number of dataset used for validation, ϕi is the

average of increasing classification accuracy for the ith dataset, Ni

is the number of objects in the testing set of the ith dataset.

The next performance evaluation was performed based on the

receiver operating characteristic (ROC). The ROC curve has been

used to show the trade-off between hit rates and false alarm rates

of classifiers in signal detecting theory. Currently, it is widely used

in medical decision making to evaluate the performance of a diag-

nostic test, as in Mazurowski et al. (2008), Akay (2009), and Seera

and Lim (2014). In machine learning, this curve is used to depict

the performance of a binary classifier by calculating the true posi-

tive rate and the false positive rate in the several values of thresh-

old. It is constructed by plotting a two-dimensional curve where

the horizontal axis and the vertical axis are the false positive rate

and the true positive rate, respectively. For a multiclass classifier
ith M classes, M different ROC curves are constructed, one for

ach class, by using a class reference formulation. The class ref-

rence ROCi curve describes the classification performance using

lass ci as the positive class and the others as the negative classes.

n this study, the area under the ROC curve (AUC) was used to eval-

ate the performance of the proposed method. The AUC for a mul-

iclass classifier is calculated from the AUC of each class reference

OC curve using Eq. (26):

UCTotal =
M∑

i=1

pi AUCi. (26)

here AUCi is area under the class reference ROCi curve and pi is

he proportion of class ci in the testing set. The higher the AUC

alue, the better classifier performance is. (Fawcett, 2006).

. Result and discussion

For simplification, in this study the value of Q was set to the

dentity matrix I for all testing sets and only the value of R = rI

aried. Therefore, the dynamics of the state x are influenced by

nly training data and r. Too small an r value results in early

chievement of a steady state, but the state may be steady with

mproper values and may produce reduced classification accuracy.

ig. 5(a) shows early achievement of a steady state as a result of

hoosing too small an r value. Conversely, too large an r value re-

ults in slow movement of the state, as shown in Fig. 5(b). As a
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Table 3

The classification accuracy of NN and NN-LMKF for testing data in all datasets.

Dataset name The average and std. dev. of classification accuracy (%) The average and std. dev. of improvement (%)

NN NN-LMKF

Glass identification 89.06 ± 5.17 93.30 ± 2.11 4.25 ± 4.22

Iris 79.20 ± 14.25 94.93 ± 1.76 15.73 ± 14.02

Statlog (Vehicle Silhouettes) 71.31 ± 6.50 77.49 ± 4.01 6.11 ± 4.16

Statlog (Australian Credit Approval) 82.18 ± 3.61 87.85 ± 0.76 5.67 ± 3.93

Statlog (Heart) 78.52 ± 3.81 85.04 ± 1.67 6.52 ± 3.98

Table 4

The Classification results for all dataset from other methods.

Dataset name Method Accuracy (%) Ratio Runs Author(s)

Glass identification BPNN-GA 92.77 9:1 10 Li (2006)

RBFNN-GA 92.36 9:1 10

LVQNN-GA 92.71 9:1 10

Iris Clustering GP 97.9 9:1 10 Eggermont, Kok, and Kosters (2004)

Refined FP (gain) 94.9 9:1 10

Refined FP (gain-ratio) 68.3 9:1 10

Logitboost NB 94.87 9:1 10 Kotsiantis and Pintelas (2005)

G-FDT 98 9:1 10 Chandra and Paul Varghese (2009)

Hybrid DT 98.66 9:1 10 Farid et al. (2014)

Hybrid NB 98 9:1 10

Statlog (Vehicle Silhouettes) Logitboost NB 70.91 9:1 10 Kotsiantis and Pintelas (2005)

G-FDT 70.12 9:1 10 Chandra and Paul Varghese (2009)

Statlog (Australian Credit Approval) Clustering GP 86.3 9:1 10 Eggermont, Kok, and Kosters (2004)

Refined FP (gain) 85.8 9:1 10

Refined FP (gain-ratio) 84.5 9:1 10

Statlog (Heart) Clustering GP 80.9 9:1 10 Eggermont, Kok, and Kosters (2004)

Refined FP (gain) 80.4 9:1 10

Refined FP (gain-ratio) 81.3 9:1 10

Logitboost NB 79.3 9:1 10 Kotsiantis and Pintelas (2005)

G-FDT 75.33 9:1 10 Chandra and Paul Varghese (2009)

Table 5

The area under the ROC curve (AUC) of NN and NN-LMKF on all datasets.

Dataset name The average and std. dev. of AUC The average and std. dev. of AUC increment

NN NN-LMKF

Glass identification 0.887 ± 0.074 0.958 ± 0.045 0.071 ± 0.085

Iris 0.861 ± 0.141 0.979 ± 0.009 0.118 ± 0.137

Statlog (Vehicle Silhouettes) 0.866 ± 0.054 0.914 ± 0.018 0.048 ± 0.047

Statlog (Australian Credit Approval) 0.879 ± 0.033 0.925 ± 0.009 0.046 ± 0.029

Statlog (Heart) 0.823 ± 0.063 0.883 ± 0.031 0.060 ± 0.055
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onsequence, a large number of epochs are required to achieve

tability. The value of r was chosen by trial and error such that

he classification accuracy is increased after applying LMKF to the

raining data. The values of r used in validation of each dataset are

abulated in Table 2.

The classification accuracy results of the proposed method and

he original neural network for each dataset are summarized in

able 3. It can be observed from Table 3 that the proposed method

mproved the classification accuracy of the original neural network

or all datasets. The minimum improvement was 4.25% on average

or Glass Identification dataset. The best improvement was 15.47%

n average for Iris dataset. In most of the testing sets (92% test-

ng set) the improvement of classification accuracy was greater

han 1%. The proposed method also reduced the standard devia-

ion of classification accuracy of the original neural network. This

hows that the proposed method has classification accuracy with

smaller variation than the original neural network. Finally, the

mprovement of the classification accuracy for all of the datasets

sed for validation was 6.50%. This result shows that the proposed

ethod is able to improve the classification performance of the

riginal neural network regardless of the type of object attribute.
The value of covariance matrices Q and R play an important

ole in the estimation of LMKF parameters. In this study, the value

f Q and R were determined using trial error. Choosing inappro-

riate values of Q and R may lead to increasing the MSE and de-

reasing the classification accuracy. This is a weakness of the pro-

osed method. In this study, the proposed method was compared

ith other classification methods from previous researches. Table 4

hows the classification results for all datasets from other methods.

s can be seen in Tables 3 and 4, the proposed method outper-

orms other methods for almost all datasets, except for Iris dataset.

ll classification methods in Table 4 used 10-folds cross validation.

herefore the ratio between training data and testing data is 9:1.

n the other hand, the proposed method only used 50% of dataset

or training data. This fact shows that the proposed method only

equires smaller training data to achieve better performance, ex-

ept for Iris dataset. For Iris dataset, Clustering GP, G-FDT, Hybrid

T, and Hybrid NB using the 9:1 training data to testing data ratio

btained higher classification accuracy than the proposed methods.

herefore, to achieve better classification accuracy on Iris dataset,

he proposed method may need the number of object in training

ata greater than 50% of dataset.
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Fig. 6. The MSE of the NN-LMKF reduction for each epoch during Kalman filter iteration.

Table 6

The summary of the mean square error (MSE) of NN and NN-LMKF for training data in all datasets.

Dataset name The average and std. dev. of MSE The average and std. dev. of reduction

NN NN-LMKF

Glass identification 0.062 ± 0.039 0.033 ± 0.015 0.029 ± 0.027

Iris 0.089 ± 0.081 0.042 ± 0.028 0.047 ± 0.057

Statlog (Vehicle Silhouettes) 0.078 ± 0.020 0.059 ± 0.009 0.019 ± 0.016

Statlog (Australian Credit Approval) 0.133 ± 0.036 0.106 ± 0.016 0.027 ± 0.027

Statlog (Heart) 0.137 ± 0.037 0.118 ± 0.023 0.019 ± 0.026

Table 7

The computing time and CPU usage for the training step in all datasets.

Dataset name The average of computing time (s) The average of CPU usage (%)

Glass identification 3.25 48

Iris 2.21 48

Statlog (Vehicle Silhouettes) 33.58 98

Statlog (Australian Credit Approval) 10.06 93

Statlog (Heart) 6.13 96
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The AUCs for each classifier were calculated to extract informa-

tion from the ROC curve to a single scalar value representing clas-

sifier performance. The trapezoidal rule (Kiusalaas, 2010) was used

to calculate the AUC of each class reference ROC curve. The AUC to-

tals for each classifier were then calculated using Eq. (26) and the

results are summarized in Table 5. It can be observed in Table 5

that on average the AUC of the NN-LMKF is greater than the AUC of

the original neural network for all datasets. The AUC increased for

all datasets, and a minimum AUC increment of 0.046 on average

was achieved for Statlog (Australian Credit Approval) dataset. The

maximum AUC increment of 0.118 on average was achieved for Iris

dataset. This result reinforces the previous classification accuracy

analysis. Therefore, it can be ensured that the proposed method

achieves better performance than the original neural network.

From the MSE point of view, the proposed method also reduced

the MSE of the original neural network for all training data. Fig. 6

depicts the MSE of the NN-LMKF reduction for each epoch. As ob-
erved in Fig. 6, at the beginning of the Kalman filter iteration, the

SE of the NN-LMKF might be greater than the MSE of the original

eural network. The MSE of the NN-LMKF then decreased asymp-

otically to a value below the MSE of the original neural network

s the number of epochs increased. The MSEs of the NN-LMKF

or each testing set are summarized in Table 6. As observed in

able 6, the averages of the MSE were reduced after applying the

N-LMKF to all datasets. On average, the minimum MSE reduction

as 0.019 for Statlog (Heart) dataset and the maximum was 0.047

or Iris dataset. This result indicates that the predicted output of

he NN-LMKF is closer to the desired output than is the predicted

utput of the original neural network.

The computing time and CPU usage for the training step depend

n the number of features, classes, and samples in the training

et. The more features, classes, and objects, the more computing

ime and the higher CPU usage are needed to perform the training

hase. For example, to perform the training phase in a 3.00 GHz
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entium(R) Dual-Core personal computer with 2.00 GB RAM and

indows 7 operating system, it took approximately 2.21 s and 48%

f CPU usage in average for Iris dataset. For Statlog (Vehicle Sil-

ouettes) dataset, the average of computing time and CPU usage

ere 33.58 s and 98% respectively. To perform classification in the

esting phase, the computing time was less than 0.017 seconds per

ample. The computing time and CPU usage for the training step

n all datasets are summarized in Table 7.

. Conclusion and future work

In this paper, a method for improving the classification accu-

acy of a neural network is proposed. The proposed method em-

loyed simple transformation model, called LMKF, as a post pro-

essing of the neural network. The model used the linear combi-

ation of the object features and the predicted output of the neural

etwork to decrease the error of neural network. The parameters

f the LMKF were estimated using the Kalman filter iteration dur-

ng the training phase. The proposed method has been validated

sing five datasets from the UCI Machine Learning Repository that

ave different attribute types, numbers of attributes, numbers of

bjects, and numbers of classes. The validation results show that

he proposed method has the ability to improve the classification

ccuracy of the original neural network regardless of the type of

bject attribute. In comparison with other classification methods,

he proposed method achieved better performance for almost all

ataset using smaller training data. Furthermore, the AUC analysis

hows that the proposed method achieves better performance than

he original neural network. In addition, the predicted output of

he NN-LMKF is closer to the desired output than is the predicted

utput of the original neural network.

Although it has been validated that LMKF can increase the clas-

ification accuracy of neural network, there are some limitations

n the proposed method. The first, if the object features, the pre-

icted output of neural network, and the desired output do not

ave linear relationship then a linear model cannot be used to

ransform the predicted output of neural network to a value close

o the desired output. Therefore, in this condition the proposed

ethod may fail to increase the classification performance of neu-

al network. The second, increasing the number of attributes and

lasses will result in increasing the computing time and CPU us-

ge due to increasing the size of matrices involved in Kalman filter

teration.

For future research, the application of LMKF to improve the per-

ormance of other classifiers, such as the support vector machine

SVM), should be investigated. To obtain an optimal LMKF param-

ter estimator more accurately, an optimization method could be

onsidered in determining the covariance matrices Q and R. Fur-

hermore, the use of other methods, such as metaheuristic meth-

ds, could also be considered to replace Kalman filter iteration in

stimating the parameters of the linear model. In addition, the ap-

lication of a nonlinear model based on the extended Kalman filter

or improving classifier performance should also be investigated.
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