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Abstract 
 

As the Android operating system has become a key target for malware authors, Android 
protection has become a thriving research area. Beside the proved importance of system 
permissions for malware analysis, there is a lot of overlapping in permissions between 
malware apps and goodware apps. The exploitation of them effectively in malware detection is 
still an open issue. In this paper, to investigate the feasibility of neuro-fuzzy techniques to 
Android protection based on system permissions, we introduce a self-adaptive neuro-fuzzy 
inference system to classify the Android apps into malware and goodware. According to the 
framework introduced, the most significant permissions that characterize optimally malware 
apps are identified using Information Gain Ratio method and encapsulated into patterns of 
features. The patterns of features data is used to train and test the system using stratified 
cross-validation methodologies. The experiments conducted conclude that the proposed 
classifier can be effective in Android protection. The results also underline that the 
neuro-fuzzy techniques are feasible to employ in the field. 
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1. Introduction 

Android operating system has become a popular mobile operating system. It is installed in 
millions of mobile devices and accounted for 61.9% OS market share in table unit sales to end 
users in 2013, while 36% for iOS and 2.1% for MS [1, 2]. The open nature of Android apps 
makes it a key target for malware authors. They can freely upload malicious apps to the 
Android app store or to a third-party alternative market. Any user is prone to infection through 
downloading and installing these malwares. A recent research [3] has shown that the malicious 
apps exist in both the official Android app store and unofficial markets with a rate of 0.02% 
and 0.2% respectively. According to Sophos security threat report in 2014, more than 300 
Android malware families have been recorded in the period between August, 2010 and 
December, 2103 [4]. 

Android malwares continue to evolve, get smarter and more harmful. The harm’s severity 
is ranged from showing Ads to launching DDoS attacks. Recently, malware authors start 
following technologies that have been applied in Windows. For example, some reports 
indicated a large-scale botnet controlling Android devices, namely Andr/GGSmart-A [5]. This 
botnet establishes a centralized control to instruct all of the Android devices it has infected to 
perform a task according to the desire of the author, i.e. send SMS messages that will be 
charged to the device owner. Ransomware is another harmful technology that attacks the 
Android devices and makes devices is inaccessible, and then it demands a payment to free it 
[6]. The trojanized malwares also have witnessed some evolution. The Trojan horse 
Andr/BBrodge-A, which is detected by Sophos, uses a privilege escalation exploit to install 
malicious app on the device. Sophos considered it as the most widely detected Android 
malware in 2013 [4]. A selection of malware harms along with examples on each one is 
mentioned in the following: 

• Botnet activity harms, examples: Launching DDoS attacks; Sending premium rate 
SMS messages. 

• Surveillance harms, examples: Audio; Camera; Call logs; Location. 
• Data theft harms, examples: Account details; Contacts; Call logs; Phone number; 

Stealing data via App vulnerabilities. 
• Financial harms, examples: Sending premium rate SMS messages; Stealing 

transaction authentication numbers; Extortion via ransomware; Making expensive 
calls. 

• Impersonation harms, examples:  SMS redirection; Sending email messages; Posting 
to social media. 

• Annoying harms, examples: Showing adds. 
All these threats have made the Android protection a thriving research area with 

considerable amount of still unsolved problems. The research of Android malwares detection 
has typically focused on platform based protection where the Android system is equipped with 
a mechanism of detection. The characterization of essential differences between malware and 
goodware apps is one of the research attempts [7]. The system of Android permissions 
represents a key in the running cycle of Android apps. The permission system is an important 
structure unit which is stored in the Android zipped archive (APK) manifest XML file. It 
grants or denies privileges to secure the user’s privacy-relevant resources such as contacts, 
GPS, and SMS. Although these permissions are deemed to be useful in discriminating apps, 
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there have been limited attempts in the literature to exploit them in detecting malware apps [8]. 
The main challenge exists is the large overlap in the permissions. As the malicious apps tend to 
request a lot of permissions, most of these permissions are requested also by the goodware 
apps. Consequently, measurement and aggregation of the differences to obtain clear deviation 
between the two kinds of apps are too complicated. Moreover, the permission-based effective 
characterization of new variant of malwares, which are found almost every day, is another 
sustained challenge. With these challenges in mind, we design an intelligent approach for 
Android malware detection. Our system is built based on neuro-fuzzy inference 
methodologies. The contributions of our research are: 

• Measuring the most significant permissions to discriminating optimally between the 
malware and the goodware apps. 

• Combining most significant permissions into feature patterns to characterizing the 
Android apps efficiently. 

• Building self-adaptive neuro-fuzzy inference system based on permissions requested 
to detect malware apps. 

• Investigating the potentials of neuro-fuzzy inference systems in detecting Android 
malwares. 

This paper is organized as follows: Section II presents an overview of the Android OS and 
reviews the literature. Section III introduces the methodology of the research. After that, 
Section IV presents and discusses the experimental results. Finally, we conclude our paper in 
Section V. 

2. Background and Literature Review 
In this section, we give an overview of the Android OS and existing Android malware defense 
techniques to motivate our new detection platform. 

2.1 Android System Overview 
This overview explores the Android OS in terms of the permission system. At the lowest level 
of the Android architecture, a customized Linux kernel is used to manage various system 
resources and hardware devices. Android apps run with a sandbox, which is a distinct system 
identity. Each app is assigned unique user ID at installation time and group IDs corresponding 
to requested permissions. According to the risks implied, the permissions are classified into 
four levels: 1) Normal, 2) Dangerous, 3) Signature, and 4) SignatureOrSystem. The Normal 
permissions are granted by the sandbox while the Dangerous permissions that might adversely 
impact the user environment are declared statically by the apps. The user will be prompted for 
approval at the install time. Permissions from the other two levels are granted according to 
certain conditions. Signature permissions are automatically granted when requesting 
application is signed with the same certificate of the app that declared the permissions, the 
SignatureOrSystem permissions are essentially limited to the apps that are pre-installed in 
Android’s partition [9]. The grant process is not done dynamically; the Android’s package 
installer performs it at the installation time either automatically as for normal permissions, or 
manually as for dangerous permissions. Information on the permissions requested can be 
extracted from the AndroidManifest.xml file. This file includes declaration tag 
(<uses-permission>) for each of the permissions requested. For example, an application that 
needs to monitor incoming SMS messages would specify:  

<uses-permission android:name=  "android.permission.RECEIVE_SMS" /> 
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It is accepted that the malicious apps demonstrate distinct malicious behaviors, and these 
behaviors resulting from specific permissions granted. Hence, malware apps often 
demonstrate distinct permissions. We specify here two examples of malicious behaviors: 1) 
collecting sensitive information and 2) obtaining financial gain. In the first behavior, a 
malware app should be granted unique permissions i.e.: READ_PHONE_STATE, SEND_SMS, 
and READ_OWNER_DATA. While in the second behavior, a malware app should be granted 
i.e: ACCESS_WIFI_STATE, READ_PHONE_STATE, and INTERNET permissions.  

2.2 Android Protection 
The protection strategies are grouped into two sets: (i) marketplace protection and (ii) platform 
protection. The marketplace protection is performed by the marketplace own tools. For 
example: analyzing submitted apps before publishing them; forcing the authors to register 
their apps allowing them to claim authorship. However, these actions have proven insufficient 
to prevent propagation of malware since the manual review and authorization of apps is a 
difficult task to perform with an enormous number of apps being submitted every day. As an 
alternative, automated approaches have been recently published. Google announced Google 
Android’s Bouncer to automatically authorize submitted apps [10]. Another example is the 
DroidRanger for detecting smartphone malware in Android markets [3]. The main critique 
against this type of protection is that even if the app review processes, manual or automatic, 
are perfect, it cannot defend malwares uploaded to unofficial markets in which there are no 
guaranties about the trustworthiness.  

In the platform protection set, the Android platform incorporates a technique to detect the 
actuation of malicious apps once installed in the device. A number of classification techniques 
adopted to detect malware apps have been introduced in the literature. P. Faruki et. al. [11] 
divide the techniques into: static, dynamic, and hybrid according to how code is analyzed to 
detect the malware apps. In the static techniques, the apps code is analyzed off-line, without 
running it, while the code is monitored dynamically to inspect the interaction with the system 
in the dynamic techniques. The hybrid techniques leverage the good of both the static and 
dynamic techniques. The authors in [12] introduced a taxonomy of the malware detection 
techniques in terms of monitoring, analysis, and identification. In this paper, we divide the 
protection techniques into three subsets: (i) signature-based, (ii) anomaly-based, and (iii) 
permission-based. In the subsequent sections, we review the pros and cons and give some 
examples of research published for each subset. 

A. Signature-based Technique: 
The main benefit of signature-based detection techniques lies in its accuracy of detection of 
known malware and simplicity of implementation. The existing commercial anti-malware 
systems use signature-based detection methods. They analyze malware codes off-line and 
extract features to create a unique signature for the malware code. Hence, for each malware, 
signature-based systems are equipped with at least one signature [13], and usually, the 
signatures are stored in accompany database. In this regards, these systems can detect only 
malware for which a signature is available, and they fail against zero-day and polymorphic 
malwares. The signature generation is done manually and it is a difficult and time-consuming 
task. Also it is impossible to perform in full extent due to the massive number of applications. 
All of these factors can come up with negative results. Zhou et al. [7] reported that common 
smartphone antivirus apps detect only between 20.2% and 79.6% of analyzed malware.  
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Many applications could be listed under this subset, such as the AndroSimilar [14] which is 
a robust statistical feature signature-based method to detect Android malware apps, and the 
AppGuard [15] which is a malware prevention system that monitors the application inline. 

B. Anomaly-based Technique: 
Several works have been introduced to detect Android malwares by analyzing dynamically 
various features that serve to characterize anomaly behaviors. These techniques monitor 
constantly system calls, network activities, event logs, user activity permissions, and program 
traces. Although anomaly-based techniques are arguably more powerful than the 
signature-based techniques in terms of polymorphic and zero-day malware detection, they 
cause big resources consumption, particularly if a large number of information is collected 
directly over a running app. 

The dominant features of what has been published in this subset are: the real-time 
monitoring and the use of machine learning algorithms. In [16], Shabtai et al. proposed a 
light-weight Android malware detection system called Andromaly. This system is a real-time 
monitoring system that collects various system metrics, such as CPU usage, amount of data 
transferred through network, number of active processes and battery usage. The collected 
features are classified using some of machine learning methods like: K-Means, Decision Trees, 
Bayesian Networks, and Naïve Bayes. Schmidt et al. [17] proposed a system for both Android 
and Symbian operating systems. Initially, the app’s function calls are extracted and the data is 
analyzed using machine learning method, the Decision Trees. Secondly, the system monitors 
more features such as free RAM memory, CPU usage, SMS count for further analyzing 
behavior. Classification is done in the cloud using machine learning algorithms such as 
Support Vector Machines (SVM), and Tree Kernels. MADAM system [18] periodically 
monitors a number of features to model app behavior and classify it as goodware or malware. 
The collected observations are classified using K-Nearest Neighbor (K-NN). Finally, 
TStructDroid [19] presents a real-time malware detection system. The proposed system 
monitors Process Control Blocks (PCB) and analyzes the time-series, feature logging, and 
frequency component analysis of data. It uses machine learning method to analyze monitored 
data and classify apps into goodware and malware. 

C. Permission-based Technique: 
Malware detection of Android apps based on permissions is rather new research field. The 
main goal of this research is to characterize the fundamental differences between the goodware 
apps and the malware apps in term of permissions. Usually, an Android app is represented by a 
vector of binary values, each of which is associated with one of the 130 Android official 
permissions [8]. In the vector, the value of “1” indicates that the permissions are required by 
the apps and the value of “0” indicates that the permission is not required. Since the dataset 
size does affect the accuracy of the detection, collecting big data for training the system is one 
of the considerable factors. Although each set of permissions implies certain differences 
between a goodware app and a malware app, the overlapping between these permissions over 
the apps makes it too difficult to obtain a comprehensive insight on the deviation between the 
two classes. This pushed the researchers to use sophisticated methodologies such as machine 
learning. For example, the authors in [20] introduced a feature learning framework using SVM, 
Decision Trees, and Bagging machine learning methods. The system proposed by Sanz et. al. 
[21] is based on the permissions requested in Androidmanifest.xml using Naïve Bayes, 
Random Forest, and J48 machine learning. Another example introduced by C.-Y Huang et. al. 
[22] to map the requested permissions in the Linux kernel. The mapped attributes are used 
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with AdaBoost, Naïve Bayes, Decision Trees, and SVM machine learning methods to identify 
the malware apps. The research proposed by Shalaginov and Franke [23] is another example 
that employed permissions to detect Android malwares. Each permission is assigned a degree 
security risk from 0 to 4. The higher degree is assigned to the most dangerous permission. 
Neuro-fuzzy approach is applied to classify mobile applications into benign and malicious. 
The system achieved reliable classification accuracy of 76%. 

With the use of machine learning methods, intuitively, it is a difficult to draw a decision 
boundary between malware apps and goodwares apps based on highly overlapped permissions. 
This problem calls for a precise, expert modeling system that focuses on accuracy. We believe 
that the fuzzy logic methodologies are useful in the development of expert modeling systems 
as these methodologies are successfully tested to solve many problems in many research areas 
such as estimation [24], classification [25], and recognition [26]. 

3. Research Methodology 
As this paper is intended to investigate the feasibility of neuro-fuzzy techniques to Android 
protection systems, we only applied simulation approach. Simulation provided apportunities 
for finiding adequate parameters, simulating the potential changes to the system, and 
predicating the changes impact on the system. The malware detection system is introduced in 
this section. Firstly, in the subsequent sections the k-ANFIS structure is introduced. Then, the 
dataset employed in this research is detailed. At the end, the operations of feature selection and 
feature pattern construction are explained. 
 

3.1 Android Malware Detection System, k-ANFIS 
The name “k-ANFIS” is acronym of kEFCM-based Adaptive Neuro-Fuzzy Inference System. 
k-ANFIS is a combination of ANFIS [27] and kEFCM [28]. ANFIS is a neuro-fuzzy model 
that combines fuzzy inference systems and artificial neural networks while kEFCM is 
kNN-based evolving fuzzy clustering method. The architecture of k-ANFIS is shown in Fig. 1. 
k-ANFIS is the first neuro-fuzzy inference system that employs kEFCM to create fuzzy rules. 
kEFCM brings various enticing advantages over existing methods, including: 1) reducing the 
complexity of computation, 2) on-line clustering, and 3) fuzzy evolving. Regardless of the 
number of neighbors involved in the clustering which is can be precisely determined, 
k-ANFIS does not use any tuning parameters that could affect the overall performance. The 
adaptive network of ANFIS is a multilayer feed-forward network. Each neuron in a layer 
performs a particular function on its input signals and transmits its output to neuron(s) in the 
next layer. There are two types of neurons, adaptive and fixed. Adaptive neurons have 
parameters while fixed neurons have no parameters. 

 
Fig. 1. k-ANFIS structure 
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Fig. 2 illustrates the architecture of ANFIS, where the squares represent adaptive neurons and 
circles represent fixed neurons. 

 
Fig. 2. ANFIS architecture  

 
ANFIS constructs a fuzzy inference system corresponding to a dataset of input/output. 

ANFIS uses in most cases a hybrid system of two learning methods, back-propagation and 
least square type to adjust the membership function parameters of the fuzzy inference system. 
The parameters related to the membership function are modified through the learning process.  

ANFIS uses Takagi-Sugeno, a method of fuzzy ‘if-then’ inference rules. The if-part of the 
rule is called the antecedent, while the then-part of the rule is called the consequent. A typical 
Takagi-Sugeno rule is as follows: 
 

𝐼𝐹 𝑥1𝑖𝑠 𝐴1& 𝑥2𝑖𝑠 𝐴2 … . & 𝑥𝑛𝑖𝑠 𝐴𝑛   𝑇𝐻𝐸𝑁 𝑦 = 𝑓(𝑥1, 𝑥2, … . 𝑥𝑛) … … . . (1) 

Where x1, x2, and xn: input variables and A1, A2, and An: fuzzy sets obtained by applying a 
membership function, which defines how each input point is mapped to a membership value 
between 0 and 1. There are several types of membership functions i.e. Triangular, Trapezoidal, 
and Gaussian. Choosing the membership function depends on the problem at hand. If y is a 
constant, then the Takagi-Sugeno is a zero-order Sugeno type, and it is said to be a first-order 
fuzzy type if y is a first-order polynomial: 
 

𝑦 = 𝑘0 + 𝑘1𝑥1 + 𝑘2𝑥2 + ⋯+ 𝑘𝑛𝑥𝑛 … … … … (2) 
 

As shown in Fig. 2, ANFIS architecture comprises 6 layers. Each layer involves a number of 
neurons and performs a specific task.  
 

Layer 1, the input layer: neurons of this layer make no computations. They pass the input 
data to Layer 2. 
 
Layer 2, the fuzzification layer: neurons in this layer use a fuzzy membership function to 
compute the membership degrees of the inputs in the corresponding fuzzy sets. Generally, a 
fuzzy membership function depends on three parameter sets and described as a bell-shape 
like. For example, the Triangular membership functions μ of a vector x, depends on three 
parameters a, b, and c, as given by: 
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𝜇(𝑥, 𝑎, 𝑏, 𝑐) = 𝑚𝑎𝑥 �𝑚𝑖𝑛 �
𝑥 − 𝑎
𝑏 − 𝑎

,
𝑐 − 𝑥
𝑐 − 𝑏

� , 0� ……………………………..… (3) 

 
Where the parameters a and c locate the "feet" of the triangle and the parameter b locates the 
peak. Fig. 3 shows the triangle-shaped membership function. 
 

 
Fig. 3. Triangle-shaped membership function 

 
Layer 3, the rule layer: each neuron in this layer represents a single Takagi-Sugeno fuzzy 

rule. Each neuron receives inputs from the respective fuzzification neurons in Layer 2 and 
combines them through a specific t-norm operator, which is usually multiplication to get the 
firing strength wi of the rule ri: 

 
𝑤𝑖 = 𝑡�𝜇𝑖(𝑥1𝑖) , 𝜇𝑖(𝑥2𝑖)� =  𝜇𝑖(𝑥1𝑖). 𝜇𝑖(𝑥2𝑖) ………………….... (4) 

 
Where µi(x1i) and µi(x2i) represent values of the fuzzy function membership for x1i and 
x2i input variables. 
 

Layer 4, the normalization layer: neurons in this layer compute the normalized firing 
strength of a given rule w�i by dividing each rule firing strength wi by the summation of all of 
the rules, as follows: 

 

𝑤�𝑖 =
𝑤𝑖

∑ 𝑤𝑗𝑛
𝑗=1

 ……………………………………... (5) 

 
Layer 5, the defuzzification layer: Neurons in this layer are called defuzzification neuron. 

Each defuzzification neuron calculates the weighted consequent value of a given rule as: 
 
𝑦𝑖 = 𝑤�𝑖. 𝑓𝑖  ………………………………………..……………..………………….. (6) 

𝑦𝑖 = 𝑤�𝑖. [𝑘0𝑖 + 𝑘1𝑖𝑥1𝑖 + 𝑘2𝑖𝑥2𝑖 + ⋯+ 𝑘𝑛𝑖𝑥𝑛𝑖] ………………………………...... (7) 
 
Where x1i  , x2i , … xni  are the input, yi  is the output of the defuzzification rule i, and 
k0i, k1i, k2i,and kni are the consequent parameters of rule i. 
 

Layer 6, the output layer: This layer has only one neuron which performs the aggregation 
of all incoming layer 5’s outputs. Usually, the aggregation process is summation. The global 
output of the system is given by [29]: 
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𝑜𝑖 = �𝑦𝑖

𝑛

𝑖=1

 …………….…………………………..…… (8) 

 
Fuzzy rule generation is the most important task in modeling neuro-fuzzy inference 

systems. One of the common methods to accomplish this task is the use of fuzzy 
clustering-based methods. Such methods decompose the input space into a certain number of 
clusters, where each input data belongs to a cluster in a certain degree. Every cluster is 
assigned to a specific Takagi-Sugeno fuzzy rule. The rules resulted are more tailored to the 
input data than they are generated without clustering.  

k-ANFIS uses the evolving fuzzy clustering method, the kEFCM, which is an evolving 
fuzzy clustering method that overcomes the problems of computational cost and clustering 
complexity diagnosed in the traditional version. kEFCM process divide into two task. First 
task orders all the points in such a way that the points in the same cluster are more similar to 
each other than to those in other clusters. Geometrically, the clusters are circles. The 
least-squares method is used in determining the circle center and radius. The membership 
degree of a point in a cluster is identified by the Euclidean distance between the point and the 
cluster center. This task is repeated on the remaining data points. As the first task may create 
unwanted overlapped clusters, the main function of the second task is to apply an optimization 
procedure that handles two constraints: (i) The number of clusters that contain small cluster(s) 
is equal to 0; (ii) The number of clusters that include points less than k is equal to 0. 

3.2 Dataset 
For the purpose of evaluation, we used the dataset of Genome project [30]. The main 
advantage of this dataset is that it is almost free of noise, which led us to not considering type-2 
fuzzy system. Type-2 fuzzy system is used where it is difficult to determine an exact 
membership function such as when the training data are corrupted by noise [31]. The dataset 
consists of more than 1,200 malware samples that cover the majority of existing Android 
malware families collected between August 2010 and October 2011. The researchers released 
the entire dataset to help the security community in developing efficient malware detection 
techniques [7]. However, the Genome data actually contains only malware samples. To make 
our dataset more comprehensive and up to date, we downloded goodware apps from public 
Android app store, Google Play. The goodware apps are analyzed in terms of permissions and 
added to the dataset. From this large collection of Android malwares, we selected a total of 200 
samples, 100 malwares and 100 goodwares. For each sample, there are 50 features. Each 
feature refers to one request of permission, for example, read_phone_state, 
access_network_state, sms_received and sig_str. The features share same binary values where 
1 means the malware possesses the feature and 0 means the malware does not possess it. 

3.3 Features Selection 
When the number of extracted permission based features is large, some of which may be 
redundant or irrelevant, and this introduce several problems such as misleading the detection. 
This paper uses the Information Gain Ratio method (IGR) to select the most significant 
features of Android malware. Information Gain Ratio method works based on the extraction of 
similarities between sets of Android app and then it provides the greatest weight to the most 
effective features based on the class of goodware and malware apps belonging to IGR, as 
explained in the following equations: 
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𝑔𝑎𝑖𝑛_𝑟(𝑋,𝐶) =  
𝑔𝑎𝑖𝑛(𝑋,𝐶)

𝑠𝑝𝑙𝑖𝑡_𝑖𝑛𝑓𝑜(𝐶) ………………………………………………………… (9) 

𝑠𝑝𝑙𝑖𝑡_𝑖𝑛𝑓𝑜(𝐶) = � �
|𝐶𝑖|
|𝐶|� 𝑙𝑜𝑔

|𝐶𝑖|
𝐶𝑖

 ……………..………………………………………..… (10) 

 
Where, gain_r (X,C) represents the gain ratio of the feature X frequency in class C. Ci and 

|Ci| denote the frequency of features X in class C, the ith subclass of C and the number of 
features in Ci, respectively. The features that have been selected along with the ranks resulted 
from the IGR are shown in Fig. 4. 

 
Fig. 4. The selected Android malware features 

3.4 Feature Pattern Construction 
Upon identifying the most significant features of Android samples, we started the process of 
feature pattern (FP) construction. As mentioned before, each feature value is a binary data type. 
For instance, the feature: “WRITE_APN_SETTINGS” will store 1 if the malware write access 
point name (APN) settings, otherwise will store 0.  In addition to aviding CPU overload while 
execution the detection algorithm with a lot of features, the construction process aimed at 
isolating goodware and malware samples perfectly by selecting the largest number of features 
that gain high ranks. The number of features selected was 24 features. Based on the values (0 
or 1), we considered each feature as bit. Thereby, the number of features is devided into three 
group (bytes) which formed the system training and testing input. The FP construction process 
for each sample involved the following steps: 

1. Selecting the top 24 features based on the results of the IGR method, 
2. Ordering the features according to the IGR ranks, 
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3. Dividing the 24 feature values into 3 string of binary values or bytes, and finally 
4. Converting the bytes to decimal number, each number represents one FP. 

 

Example of feature patterns for 11 Android malwares can be seen in Table 1. The last 
column is the class of the malware, 1 means malware and 0 means goodware. 

 
Table 1. Examples of the feature patterns (FP) 

Malware# FP(1) FP(2) FP(3) Class 
1 96 77 135 1 
2 0 65 7 0 
3 64 119 247 1 
4 0 67 114 0 
5 64 119 247 1 
6 65 203 246 1 
7 0 73 10 0 
8 65 73 2 1 
9 32 64 0 1 
10 0 64 2 0 
11 0 65 0 0 

4 Results and Discussion 
All the 200 Android samples in the dataset are arranged for 3-input-1-output system as this 
format: (FP1, FP2, FP3, C), where FP1, FP2, and FP3 are the input values and C is the output 
variable. Before approaching the experiments, we tuned kEFCM by testing several values of k, 
the number of neighbors involved in the classification. The test was on randomly selected 20 
samples. Finally and based on the results, the k=7 is selecetd as it gave the highest accuracy 
[32].  Typically, an initial step is to split the dataset into training part and testing part. We use 
the n-fold cross-validation technique to perform the split step [33]. We choose (n=10) since 
the 10 value seems to be an optimal number of folds that optimizes the time it takes to 
complete the test [34]. The dataset is randomly split into 10 mutually exclusive sub-datasets of 
equal size. The k-ANFIS is trained 10 times. Each time, we use 9 folds for the training and 
leave one single fold for the testing. Typically, the overall cross-validation accuracy is 
affected by the places and number of the classes in the 10 folds. To assure results with lower 
bias and lower variance, we performed the process of stratification [35], which aims to create 
folds in a way that they contain the same proportion of classes (malware and goodware). Table 
2 shows number of malware and goodware samples along with the total number of samples in 
each fold. 

 
Table 2. 10-folds cross-validation and stratification 

 Malware 
samples 

Goodware 
samples Total 

Training 90 90 180 
Testing 10 10 20 

Total # of samples in each fold 200 
 

The overall accuracy of cross-validation is calculated by averaging the n individual 
accuracy measures:  
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Where CVA is the cross-validation accuracy, n is the number of folds used, and Ai is the 

accuracy measure of each fold. We used different accuracy measures for each experiment 
conducted.  
 
Experiment-1: Definition of Membership Function 
One of the most significant steps in developing a neuro-fuzzy inference system is defining 
fuzzy membership function MF [36]. We tested the performance of k-ANFIS using five MFs: 
two Gaussian membership functions: gauss and gauss2, sigmoid member function: sig, 
generalized bell membership function: gbell, and trapezoidal membership function: trap. The 
main objective of using these MFs is to determine which kind of MFs is important in our 
approach i.e. straight line, curve, or asymmetric. We established the Variance Account For 
(VAF) as a CVA to assess the performance of k-ANFIS on each MF. The VAF is calculated 
for each fold as follows: 

 

𝑉𝐴𝐹 = �1 −
𝑣𝑎𝑟(𝑀 − 𝑃)
𝑣𝑎𝑟(𝑃)

� . 100 
 

Where the variance (var) in set (y):  𝑣𝑎𝑟(𝑦) = 1
𝑛
∑ 𝑃𝑖𝑛
𝑖=1  

 
…............ (12) 
 

 
A detection model is said to be excellent when the VAF is 100%. The MF parameters and 

types along with CVA achieved based on VAF are shown in Table 3. The success of the MFs 
was different regarding the VAF. The lowest CAV value is achieved by Trap MF, 76.87. The 
most desired result is given  by Sig MF, 78.75. Accondingly, the Sig MF will be adopted in the 
next experiments. On the otherhand, all remaining MFs exhibited approximatelly the similar 
performances. Therefore, the final conclusion of experiment-1 is that k-ANFIS approach 
needs to specify asymmetric membership function. 

 
Table 3. k-ANFIS accuracy by five different MFs  

MF # of Param. Formed using CVA based on VAF 
Gauss 3 Curve 77.11 
Gauss2 2 Curve 78.30 

Sig 2 Asymmetric and close curve (i.e. not 
open to the left or right) 78.75 

Gbell 2 Curve 78.45 
Trap 4 Straight lines 76.87 

 
Experiment-2: Comparison of Error Measurements 
Neuro-fuzzy inference binary classification systems usually produce continuous output score 
in the range of 0 .. 1, where 0 is the foreground class and 1 is the background class. In our case, 
0 is the goodware class and 1 is malware class. The classification could be considered as 
regression problem where a classification system is accepted as excellent when the difference 
between the score implied by it and the observed class is equal to zero. In this round of 
experiment, we used four regression metrics to calculate the differences and estimate the CVA, 
as follows: 
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1. The root mean square error (RMSE): to quantifies the difference between values 
implied by the system and the observed values: 

𝑅𝑀𝑆𝐸 = �
1
𝑛
�(𝑀𝑖 − 𝑃𝑖)2
𝑛

𝑖=1

 ……….......... (13) 

2. The normalized mean square error (NMSE): to estimate the overall deviations 
between values implied by system and the observed values: 
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3. The mean absolute error (MAE): to measure how close the values implied by the 

system to the observed values:  

𝑀𝐴𝐸 =
1
𝑛
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 ……….......... (15) 

4. The symmetric mean absolute percentage error (SMAPE): to measure the accuracy of 
the system based on relative errors: 

𝑆𝑀𝐴𝑃𝐸 =
1
𝑛
�

|𝑀𝑖 − 𝑃𝑖|
|𝑀𝑖 + 𝑃𝑖|

𝑛

𝑖=1

 ……….... (16) 

Where Pi refers to the values implied by the system and Mi refers to the observed values.  
 

To demonstrate the potentials of k-ANFIS, the ANFIS system plus another well-known 
system, DENFIS [37] are benchmarked. Three reasons behind the selection of these systems: 
(1) they improve efficiency in variety of different detection tasks and (2) they are applicable to 
the field of malware detection, and (3) these two systems are resemble k-ANFIS with regrads 
to fuzzy rules type. Given DENFIS system, the first-order Takagi-Sugeno type fuzzy rules are 
employed where the linear functions in the consequence part are created and updated by 
linear-square estimator [37]. This type of fuzzy rules can be expressed as in equations 1 & 2. 
Table 4 shows the performance of k-ANFIS, ANFIS and DENFIS for the dataset, the 
performance of the models regarding to classification errors are compared. An observation can 
be made which is that all regression merics values indicate that testing folds of k-ANFIS 
possess the smallest values compare to ANFIS and DENFIS. Fig. 5 shows comparison 
between the values of CVA of the systems. Based on the figure, it is can be clearly seen that 
the results from k-ANFIS are significantly the better. For example, the CVA of RMSE value 
of k-ANFIS is 0.3495 which is slightly small when comparing to CVA values of ANFIS and 
DENFIS which are 0.3496 and 0.3792 respectively.  Despite that k-ANFIS and ANFIS show 
comparable values of CVA of RMSE, NMSE, MAE, and SMAPE, k-ANFIS shows the 
smallest values. Futhermore, the CVA values of these metrics of k-ANFIS are much less than 
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DENFIS CVA values. The final verdict is that the k-ANFIS system outperforms ANFIS and 
DENFIS. 
 

Experiment-3: Comparison of Accuracy 
From the binary classification evaluation perspective, there is a need of separating the 

continuous output score produced by a neuro-fuzzy inference binary classification system into 
two classes as clear implied by a hard-labeling, where each output value either belongs to the 
foreground class or belongs to the background class [38]. We separated the continuous output 
values by deciding on cutoffs (thresholds) in the range of 0...1, where the malware output 
values are on one side of the cutoff and the goodware output values are on the other side of the 
cutoffs. 
Four cutoffs have been decided in this experiment: 0.10, 0.25, 0.35, and 0.40. For each cutoff, 
we computed the confusion matrix, accuracy, error, precision, and recall, which are common 
measures of binary classification performance. The confusion matrix for our classification 
problem that has two possible outcomes: 0 (goodware) and 1 (malware) is depicted as follows: 

 

C
la

ss
ifi

ed
 

Actual 
 1 0 

1 TP FP 

0 FN TN 

  
Where TP: malware and is classified as malware; FP: malware and is classified as goodware; FN: 
goodware and is classified as malware; TN: goodware and is classified as goodware. 
 

Table 4. Classification performance of k-ANFIS, ANFIS, and DENFIS 

Fold# RMSE NMSE MAE SMAPE 
System: k-ANFIS 
1 0.251 0.213 0.219 0.549 
2 0.289 0.289 0.244 0.550 
3 0.253 0.230 0.210 0.542 
4 0.417 0.696 0.351 0.635 
5 0.352 0.493 0.302 0.582 
6 0.250 0.218 0.209 0.530 
7 0.393 0.590 0.335 0.629 
8 0.395 0.594 0.352 0.654 
9 0.448 0.742 0.415 0.680 
10 0.447 0.765 0.409 0.680 
System: ANFIS 
1 0.251 0.213 0.219 0.549 
2 0.289 0.289 0.244 0.551 
3 0.253 0.230 0.210 0.542 
4 0.417 0.697 0.351 0.635 
5 0.352 0.493 0.302 0.582 
6 0.250 0.219 0.209 0.530 
7 0.393 0.590 0.335 0.629 
8 0.395 0.594 0.352 0.654 
9 0.448 0.742 0.415 0.680 
10 0.448 0.765 0.409 0.680 
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System: DENFIS 
1 0.281 0.243 0.245 0.578 
2 0.323 0.313 0.260 0.581 
3 0.285 0.250 0.227 0.567 
4 0.447 0.719 0.373 0.657 
5 0.374 0.503 0.312 0.626 
6 0.287 0.253 0.229 0.564 
7 0.428 0.621 0.377 0.658 
8 0.413 0.615 0.391 0.686 
9 0.470 0.783 0.425 0.720 
10 0.484 0.782 0.441 0.699 

 

 

 
Fig. 5. CVA in terms of regression metrics 

 
Classification accuracy:  

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃)
… … … … (17) 

Error rate: 

𝑒𝑟𝑟𝑜𝑟 =
(𝐹𝑃 + 𝐹𝑁)

(𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃)
… … … … (18) 

 
Precision: proportion of classified malwares which are actual malwares: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
… … … … (19) 

 
Recall: proportion of actual malwares which are classified malwares: 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
… … … … (20) 

 
Table 5 shows the rate of accuracy, error, precision, and recall achieved by k-ANFIS, ANFIS, 
and DENFIS for each cutoff. Whilst the results from all systems may be satsifactory in terms 
of accuracy, k-ANFIS system is better for all cutoffs comparatively. The ANFIS accuracy of 
all cuttoffs is very close to the accuracies obtained by DENFIS. In terms of how well the 
system classifies malware and goodware samples, we can see that k-ANFIS due to precision 
and recall measures gives better results than ANFIS and DENFIS for all cutoffs. 
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Table 5. The classification accuracy for each cutoff 
Cutoff Accuracy Error Precision Recall 
System: k-ANFIS 

0.10 20% 80% 21% 16% 
0.25 48% 52% 36% 44% 
0.35 62% 38% 54% 60% 
0.40 75% 25% 75% 66% 

System: ANFIS 
0.10 15% 85% 13% 14% 
0.25 45% 55% 38% 47% 
0.35 62% 38% 56% 57% 
0.40 70% 30% 68% 65% 

System: DENFIS 
0.10 13% 87% 11% 13% 
0.25 43% 57% 34% 45% 
0.35 61% 39% 57% 56% 
0.40 70% 30% 70% 64% 

 
The next comparison focuses on the false alarm rates. The Receiver Operating 

Characteristics (ROC) is commonly used to compare classifiers in terms of FP rates and TP 
rates. It is a two-dimensional graph in which TP rate is plotted on the Y axis and FP rate is 
plotted on the X axis. To compare classifiers, an important measure of the accuracy is used, the 
area under the ROC curve (AUC) [39]. The value of AUC is between 0.5 and 1. If the AUC is 
equal to 1.0 then the classifier is 100% accurate because the both the TP rate and FP rate are 
1.0, so there is no FP and no FN produced. Fig. 6, 7, and 8 depict the ROC curves for k-ANFIS, 
ANFIS, and DENFIS classifiers. The results confirm that the DENFIS’s area under the curve 
(AUC=0.9329) is slightly less than both the k-ANFIS and ANFIS (AUC=0.9333). However, 
all classifiers achieved high AUC, more than 0.9, meaning that they suffer from very low 
number of false alarms. From the results, despite the equal of AUC value for k-ANFIS and 
ANFIS, k-ANFIS performs generally better than ANFIS at the region FP rate between 0.25 - 
0.10 and between 0.175 - 0.20 of ROC space and that gives k-ANFIS slight advantage. 
 
Summary: the results confirm the suitability of neuro-fuzzy inference systems detecting 
Android malwares, with encouraging results:  

• Definition of MF: testing the performance of k-ANFIS using five different MFs 
yielded that the Sig MF clearly outperforms gauss, gauss2, sigmoid, gbell, and trap 
MFs. 

• High detection accuracy: the accuracy of the systems ranging from 70% - 75% for 
the cutoff 0.4, which is below the mid rage (0.5).  However, k-ANFIS achieved only 
a slightly more accuracy rate than the other systems. 

• False alarm rates: Receiver operator characteristics (ROC) graphs confirm that the 
false alarm rates for all of the systems is low, which means a competitiveness 
between the systems. 
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Fig. 6. ROC for classification by k-ANFIS 

 

 
Fig. 7. ROC for classification by ANFIS 

 

 
Fig. 8. ROC for classification by DENFIS 

5 Conclusion 
An intelligent approach for malware detection in Android by using 24 features is presented. 
The usual way to detect malware attacks is by adopting directly a set of features and 
distinguishing the malware from the goodware software. In our case, this way is not applicable 
since that we have a lot of malware features, and this will cause CPU overload while execution 
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the app. Our methodology nominates the 24 binary value features based on the IGR algorithm 
and encapsulates them into 3-byte feature pattern (FP). We developed a new intelligent system, 
k-ANFIS that possesses same features of ANFIS system and uses a new clustering 
methodology. k-ANFIS detects the type of Android apps by classifying the FP into malware or 
goodware. The evaluation of the system involved selection of the MF and comparing k-ANFIS 
performance against performance of ANFIS and DENFIS. The overall results have shown 
high performance, which summarizes the suitability of neuro-fuzzy inference system for 
detecting Android malware based on system permissions. 
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