Decision tree ensembles based on kernel

features

Amir Ahmad

Applied Intelligence

The International Journal of Artificial
Intelligence, Neural Networks, and
Complex Problem-Solving Technologies

ISSN 0924-669X

Appl Intell
DOI 10.1007/5s10489-014-0575-4

Volume 41, Number 1, July 2014
ISSN: 0924-669X

APPLIED INTELLIGENCE

The International Journal of
Artificial Intelligence,
Neural Networks, and

Complex Problem-Solving Technologies

Editor-in-Chief:
Moonis Ali

@ Springer

Your article is protected by copyright and all
rights are held exclusively by Springer Science
+Business Media New York. This e-offprint is
for personal use only and shall not be self-
archived in electronic repositories. If you wish
to self-archive your article, please use the
accepted manuscript version for posting on
your own website. You may further deposit
the accepted manuscript version in any
repository, provided it is only made publicly
available 12 months after official publication
or later and provided acknowledgement is
given to the original source of publication

and a link is inserted to the published article
on Springer's website. The link must be
accompanied by the following text: "The final
publication is available at link.springer.com”.

@ Springer

Appl Intell
DOI 10.1007/s10489-014-0575-4

Decision tree ensembles based on kernel features

Amir Ahmad

© Springer Science+Business Media New York 2014

Abstract A classifier ensemble is a set of classifiers whose
individual decisions are combined to classify new exam-
ples. Classifiers, which can represent complex decision
boundaries are accurate. Kernel functions can also represent
complex decision boundaries. In this paper, we study the
usefulness of kernel features for decision tree ensembles as
they can improve the representational power of individual
classifiers. We first propose decision tree ensembles based
on kernel features and found that the performance of these
ensembles is strongly dependent on the kernel parameters;
the selected kernel and the dimension of the kernel fea-
ture space. To overcome this problem, we present another
approach to create ensembles that combines the existing
ensemble methods with the kernel machine philosophy. In
this approach, kernel features are created and concatenated
with the original features. The classifiers of an ensemble
are trained on these extended feature spaces. Experimen-
tal results suggest that the approach is quite robust to
the selection of parameters. Experiments also show that
different ensemble methods (Random Subspace, Bagging,
Adaboost.M1 and Random Forests) can be improved by
using this approach.

Keywords Classifier ensembles - Decision trees - Kernel
features - Random subspaces - Bagging - AdaBoost.M1 -
Random forests.

A. Ahmad (P<)

Faculty of Computing and Information Technology,
King Abdulaziz University, Rabigh, Saudi Arabia
e-mail: amirahmad01 @gmail.com

Published online: 10 August 2014

1 Introduction

Classifier ensembles [12, 18, 32] and support vector
machines [10, 34] are two important research fields in
machine learning because of their high classification accu-
racy. Classifier ensembles are a combination of multiple
base models [12, 18, 24, 32]; the final classification depends
on the combined outputs of individual models. Classi-
fier ensembles are successful because they combine the
strengths of individual classifiers. The effectiveness of an
ensemble method depends on the properties (accurate and
diverse) of its base classifier [12, 21]. Some classifiers
like decision trees and neural networks [12, 21] are unsta-
ble as a small change in training data lead to significantly
different classifier structures which produce different out-
puts. Ensembles of these classifiers are very effective and
generally perform better than single classifiers. Bagging
[7], AdaBoost [14] and Random Forests [8] are popular
ensemble methods.

Decision trees are built by using top-down induction
methods. In a decision tree, for a continuous feature, each
node partitions the available data points into two or more
sets. Univariate decision trees are the most popular decision
trees because of their low computational complexity [9, 25].
In univariate decision trees like C4.5 [25] the decision at an
internal node uses only one feature. Any decision surface
that is not perpendicular to a feature axis is approximated by
these decision trees. Very large decision trees can approxi-
mate these boundaries well. However, to grow a very large
decision tree, a sufficiently large dataset is needed. The lack
of a large dataset often restricts the representational power
of a decision tree [12]. Ensembles of diverse decision trees
solve the representational problem associated with a single
univariate decision tree as combined results of decision trees
produce a good approximation of a non-orthogonal concept.

@ Springer

mailto:amirahmad01@gmail.com

A. Ahmad

Hence, decision tree ensembles can learn complex decision
boundaries.

Support vector machines [10, 34] (SVM) are successful
because they use the expressive power of kernel functions.
SVM use “kernel-trick” which allows kernelized algorithms
to operate in high dimensions without incurring a corre-
sponding cost. A kernel function transforms a nonlinear
classification problem into a linear classification problem
in the new high dimensional space. With appropriate ker-
nel functions, SVM can learn complex decision boundaries.
Classifier ensemble methods are quite robust to the choice
of the parameters [22, 38] whereas the performance of SVM
and other kernel based methods like Kernel-PCA [29] are
sensitive to the choice of the kernel function and other
parameters [13, 34, 38]. Various studies have been car-
ried out to compare the performance of various ensemble
methods and SVM [11, 30, 31]. Caruana and Niculescu-
Mizil [11] conclude that boosting trees and Random Forests
generally perform better than SVM. However, Statnikov
et al. [30] shows that SVM performs better than Random
Forests for microarray-based cancer classification. As both
the machine learning approaches (ensemble methods and
SVM) are useful, attempts have been made to combine the
two approaches. One such hybrid approach is SVM ensem-
bles [20, 23, 33, 35, 36]. However, SVM ensembles are
not very popular. SVM classifiers are stable [33], hence
they don’t create diverse classifiers. As the base classifier
(SVM classifiers) is sensitive to the selected parameters,
SVM ensembles are also sensitive to the selection of param-
eters. Contrary to decision tree ensembles, generally SVM
ensembles don’t show large improvements over single SVM
classifiers [36].

Therefore, there is a need for an ensemble method that
has the robustness of popular ensemble methods (i.e. it
should not be very sensitive to the selection of parameters)
and at the same time (like SVM) can also utilize the expres-
sive power of a kernel function, if an appropriate kernel
function is selected. In other words, the ensemble method
should perform very well with appropriate kernel functions,
however, the performance should not degrade sharply with
inappropriate kernel functions. In this paper, we propose
different approaches to create ensembles of decision trees
such that each member of an ensemble can use the expres-
sive power of the kernel functions. This approach uses the
kernel features created by a mapping proposed by Balcan et
al. [5]. This mapping generates a set of features such that if
a dataset is linearly separable with a margin under the ker-
nel function, then it is approximately separable in this new
kernel feature space. Like other kernel methods [29, 34],
the quality of kernel features is dependent on the selected
kernel. It is difficult to calculate the required dimension of
the kernel feature space (the number of kernel features) that
preserves all the information of the dataset because it is

@ Springer

data dependent. Balcan et al. [5] propose experiments with
10 and 20 features, however, no justification is given for
the selection of these numbers. Rwebangira [28] observe
by using different types of classifiers that if kernel features
are concatenated with the original features, then the clas-
sifiers trained on these new datasets perform better than
the classifiers trained on the original data or the classifiers
trained on the data created by kernel features. These exper-
iments suggest that classifiers can use the strengths of both
kinds of features and results in the improved performance
of classifiers [28]. Though, the effect of the kernel function
and the dimension of the kernel feature space is not dis-
cussed in [28], we expect that when a classifier is trained
on an extended feature space (original features + kernel fea-
tures), the performance of classifier becomes robust to the
selection of kernel parameters (the kernel function and the
dimension of kernel feature space). The probable reason for
this is that even if the kernel features are not informative
(because of the inappropriate kernel) or the dimension of
the kernel feature space is less than the desired dimension
(so that all the information about the dataset is not preserved
in the kernel feature space), the performance of classifier
does not degrade because the classifier can use the original
features.

We propose that this strategy of using an extended fea-
ture space (original features + kernel features) for training a
classifier can improve existing ensemble methods because it
can generate accurate and diverse decision trees (discussed
in detail in Section 3).

1.1 Contributions

The main motivation for proposing the new ensemble meth-
ods is that we want to combine the robustness of the existing
ensemble methods with the excellent expressive power of
kernel functions. Following are the two main contributions
of this paper:

(i) The mapping, proposed by Balcan et al. [5] to create
kernel features, has a random element (it uses ran-
dom data points from the training dataset). We propose
that this property can be exploited to generate classi-
fier ensembles. We propose a novel approach to create
classifier ensembles by using kernel features [5] only
and study its properties.

(ii)) To circumvent the detrimental effect of choice of ker-
nel parameters (the kernel function and the dimension
of kernel feature space), we propose that each clas-
sifier of an ensemble can be trained on an extended
feature space [28] that is created by concatenating ker-
nel features with the original features. We show that
existing ensemble methods can be improved with this
strategy.

Decision tree ensembles based on kernel features

In Section 2, we present literature review, firstly, by giving
a brief description on general classifier ensemble tech-
niques, followed by a survey of ensemble methods with
extended feature spaces. In Section 3, we describe our pro-
posed method to create decision tree ensembles with kernel
features only. The second proposed method that combines
the existing ensemble methods with kernel features is also
presented in Section 3. Section 4 presents results and discus-
sion. Section 5 concludes the paper and describes directions
for future work.

2 Related work

In this section, we first discuss the related research
work on general ensemble methods, followed by a liter-
ature review of creating ensembles with extended feature
spaces.

Several methods have been proposed to build decision
tree ensembles. In these methods, randomization is intro-
duced to build diverse decision trees. Bagging [7] and
AdaBoost [14] introduce randomization by manipulating
the training data supplied to each classifier. Bagging [7]
generates different bootstrap training datasets from the orig-
inal training dataset and uses each of them to train one of
the classifiers in the ensemble. AdaBoost [14] generates
a sequence of classifiers with different weight distribution
over the training set. In each iteration, the learning algo-
rithm is invoked to minimize the weighted error, and it
returns a hypothesis. The weighted error of this hypothesis
is computed and applied to update the weight on the training
examples. The final classifier is constructed by a weighted
vote of the individual classifiers. Each classifier is weighted
according to its accuracy on the weighted training set that
it has trained on. MultiBoost [37] combines the principle of
Bagging with AdaBoost. Ho [19] proposes Random Sub-
spaces (RS) that select random subsets of input features for
training decision trees of an ensemble.

Random Forests are very popular decision tree ensembles
[8]. They combine Bagging with RS. For each decision tree,
a dataset is created by the bagging procedure. During the
tree growing phase, at each node, k attributes are selected
randomly and the node is split by the best attribute from
these k attributes. For Random Forests [8], Breiman shows
that the prediction error of a random forest, e, satisfies the
inequality

_ 1 —s2
e < P(—5) (M)

where p is the mean correlation (it is related to diversity)
between any two members of the forest (ensemble) and s,
the mean strength (accuracy) of a typical member of the

forest (ensemble). This inequality suggests that good ran-
dom forests should have low p and high s. In Random
Forests, Breiman adds an extra randomness step (RS) to
Bagging to create more diverse decision trees. Diverse deci-
sion trees (small p) improve the classification accuracy.
Breiman shows that Random Forests are quite competi-
tive to AdaBoost. Random Forests can handle mislabeled
data points better than AdaBoost. Due to their robustness,
they are widely used. Rotation Forests [27] and Extremely
Randomized Trees [16] are other popular ensemble
methods.

2.1 Ensembles with extended feature spaces

Various researchers have proposed different techniques to
develop new extended feature spaces for classifier ensem-
bles. These new extended feature spaces are generated by
concatenating original features with the newly generated
features. RS [19] performs well when there is a certain
redundancy in features. For datasets, where there is no
redundancy, redundancy needs to be introduced artificially
by concatenating new features that are cross-products of the
original features to the original features and treating this as
the dataset.

Fatih and Ersoy [2] extend the feature space by com-
bining new features and original features and show that
extended space versions of ensemble algorithms perform
better than the original ensemble algorithms. They use many
operators on random combinations of the original features
to generate new features. They find experimentally that
new features generated with a difference operator applied
to random pairs of original features give best results. How-
ever, there is no theoretical justification for these types of
new features. Ahmad and Brown [1] present an ensem-
ble method that creates ensembles of linear multivariate
decision trees [15]. They develop a Random Discretization
method that creates random discretized features from orig-
inal continuous features. Random projections are used to
create new features that are linear combinations of original
features. A new dataset is created by augmenting discretized
features (created by using Random Discretization) with fea-
tures created by using random projections. Each decision
tree of an ensemble is trained on one dataset from the
pool of those datasets by using a univariate decision tree
algorithm. As these multivariate decision trees (because of
features created by random projections) have more repre-
sentational power than univariate decision trees, accurate
decision trees in the ensemble are created. Diverse training
datasets ensure diverse decision trees in an ensemble. This
ensemble method matches or outperforms other popular
ensemble methods.

Similar to these techniques, we propose that ensembles
can be created by using extended feature spaces. However,

@ Springer

A. Ahmad

in the proposed approach, we are using kernel features for
creating extended feature spaces that have not been used
before for ensemble methods.

3 Ensemble methods with kernel features

In this section, we first discuss the kernel features [5], and
then we present decision tree ensemble methods created by
using kernel features.

3.1 Kernel features

Kernel functions are widely used in many machine learning
applications [10, 34]. A kernel function can be viewed as
allowing one to implicitly map data into a high-dimensional
feature space without a high computational cost. A ker-
nel is a matrix containing similarity measures for a dataset
[10, 34]. There are many possible nonlinear similarity mea-
sures, but in order to be mathematically tractable the kernel
function has to satisfy Mercer conditions (continuous, sym-
metric, positive semi-definitive) [10, 34].

Many linear classification models can be transformed
into nonlinear methods by kernelizing them [10, 34]. The
kernel transformation applied in these kernelized methods
acts as a data transformation in a preprocessing stage. The
advantage of such a kernel method is that the nonlinear
aspects of the problem are captured entirely in the kernel.
In other words, a nonlinear problem is converted into a lin-
ear problem by this kernel approach, and then the linear
model is applied on them. The use of a kernel function
greatly increases the representational power of linear meth-
ods by nonlinearly transforming the data [10, 34]. However,
not all classifiers are easily kernelizable [5]. To overcome
this problem, Balcan et al. [S] proposed an alternative to
“kernelizing” a learning algorithm: rather than modifying
the algorithm to use kernel functions, one can instead con-
struct a mapping into a low-dimensional space using the
kernel function and the data distribution, and then run an un-
kernelized algorithm over examples drawn from the mapped
distribution. The advantage of this method is that the classi-
fiers that are not easily kernelizable can use the expressive
power of kernel functions.

Arriaga and Vempala [3] suggest that for a kernel func-
tion K (x;,x;) = ¢(x;)¢(x;), if a data set D is such that
the target function has margin y in the ¢-space, then a ran-
dom linear projection of the ¢-space down to a space of
dimension d = O (#log é) will, with probability at least
1 - 8, have a linear separator with error rate at most €. In
other words, for any kernel function K and margin y, K can
be considered as mapping the input space into an 0 (#)—
dimensional space. Using this argument, Balcan et al. [5]

@ Springer

suggest a mapping that uses a given kernel function and
random unlabeled data points. This mapping generates a set
of features such that if a dataset is linearly separable with a
margin under the kernel, then it is approximately separable
in this new kernel feature space. Balcan et al. [5] pro-
pose that given a pairwise measure of similarity K (x;, x;)
between data objects x; and x;, one can construct features
in a simple way by randomly selecting a set x1, x2, ..., Xq
of data points and then using K (x, x;) (similarity with the
point x; (i =1 to d)) as the i th feature of example x, where
d depends on the margin. Balcan et al. shows that SVM
with a nonlinear kernel performs similar to SVM with a lin-
ear kernel on a kernel features dataset created by using the
proposed mapping [5]. This demonstrates that a nonlinear
decision boundary in the original feature space is trans-
formed to a linear decision boundary. We propose that these
kernel features can be used to create ensembles or can be
utilized to improve existing ensemble methods.

3.2 An ensemble method with kernel features only

As discussed in Section 3.1, the mapping [5] that generates
kernel features uses random data points from the train-
ing dataset. Therefore, it generates different kernel features
in different runs as different random points are selected.
Datasets are created by using kernel features generated in
different runs. In different runs, different datasets are cre-
ated because of different kernel features. These diverse
datasets can be used to create ensembles. Each decision tree
in an ensemble learns on one dataset from the pool of differ-
ent datasets created by this method. As these decision trees
are trained on diverse datasets, we expect diverse trees. If an
appropriate kernel is selected, the mapping generates infor-
mative features. Decision trees trained on these datasets
with these informative kernel features will be accurate. In
other words, by using the proposed technique accurate and
diverse trees are generated which create an accurate ensem-
ble. The algorithm is presented in Fig. 1. The performance
of these ensembles is strongly dependent on the choice of
the kernel function and the dimension of the kernel feature
space (discussed in detail in Section 4). To overcome these
problems, we propose that the kernel features are combined
with existing ensemble methods.

3.3 Combining existing ensemble methods with kernel
features

In this section, we discuss our proposed approach that com-
bines kernel features with the existing ensemble methods.
We propose that existing ensemble methods can be bene-
fited by utilizing kernel features. In the proposed approach,
we concatenate two feature spaces, the original feature

Decision tree ensembles based on kernel features

Input- Dataset T with m continuous features and k classes (c1,c2,..,c), L the size of

the ensemble and a given kernel K.
Training Phase
for i=1...L do

Data Generation

Create d kernel features by using the mapping K F; (by selecting d points randomly)
proposed by Balcan et al. [5] and discussed in the Section 3. For a point z the d kernel
features will be K(z,z1), K(z,z2),..,K(x,z4). Create a dataset T; with these features.

Learning Phase
Learn D; decision tree on Tj.
end for
Classification Phase
For a given data point x
for i=1...L do

Convert x into a d dimensional data point x; by using the mapping K Fj.
Let p;, j(x) be the probability for x; by the decision tree D; to the hypothesis that x
comes from class ¢;. Calculate p; j(x) for all classes (j = 1..k).

end for

Calculate the confidence C(j) for each class ¢; (j = 1..k) by the average contribution

method,

L
CG) =+ _ pij(x).
=1

1=
The class with the largest confidence will be the class of x.

Fig. 1 The algorithm for ensembles with kernel features only

space and the kernel feature space, to get extended fea-
ture spaces. Each decision tree of an ensemble is trained
on an extended feature space. This strategy will allow
existing ensemble methods to use the expressive power
of kernels as each member of an ensemble is using ker-
nel features along with original features. Our philosophy
of using extended feature space is similar to the strat-
egy proposed by Rwebangira [28]. However, Rwebangira
[28] suggests an extended feature space for single clas-
sifier and we are using this strategy for creating ensem-
bles. We exploit the randomness present in the mapping
(used to create kernel features) to create diverse extended
feature spaces. Whereas, Rwebangira [28] uses only one
extended feature space. We will discuss the reasons why
these ensembles are likely to be accurate. Different ensem-
ble methods have been proposed (discussed in Section 1).
Some of them are based on different mechanisms, like Bag-
ging [7], AdaBoost.M1 [14] and RS [19] etc., whereas
some of the ensemble methods combine methods that have
different mechanisms, for example Random Forests [8§]
combines Bagging with Random Subspaces, Multiboost-
ing [37] combines Bagging with AdaBoost and Rotation
Forest [27] combines randomization in the feature space
division with Bagging. The basic idea behind these “hybrid”
ensemble techniques is that as the mechanisms differ for
different ensemble methods, their combination may out-
perform either in isolation. As our proposed approach is
also a “hybrid” ensemble approach, we expect that it will

perform similar to or better than its components (exXist-
ing ensemble methods and ensembles with kernel features
only).

Brieman develops an inequality (Eq. 1) for the predic-
tion error of Random Forests [8]. However, this inequality is
useful for all ensemble methods in which individual mem-
bers are created by random mechanisms [38]. We will use
this inequality to explain the effectiveness of the proposed
ensemble method. As discussed in Section 1, this inequality
suggests that a good ensemble method should have accu-
rate (high s) and diverse (low correlation (p)) members in
an ensemble. Hence, the mechanism we select to generate
ensembles should produce accurate classifiers with the con-
ditions that the correlation, between individual classifiers
within ensembles, is minimum. We will argue that the pro-
posed method generates accurate (high s) and diverse (low
(p))) decision trees.

(i) Accurate classifiers - As discussed in Section 1,
univariate decision trees [9, 25] can learn decision
boundaries orthogonal to the feature space. However,
any decision surface that is not orthogonal to fea-
ture axes is approximated by these decision trees. In
the proposed ensemble method, each univariate deci-
sion tree of an ensemble is trained on an extended
feature space (original features + kernel features).
Though a univariate decision tree is trained, orthogo-
nal decision surface (due to the original features) and

@ Springer

A. Ahmad

non-orthogonal decision surface (defined by the ker-
nel features) are obtained. It is expected that these
trees have more representational power as compared to
decision trees trained on original features and decision
trees trained only on kernel features as they have more
decision surfaces. Hence, these trees are expected to
be accurate [1].

If an appropriate kernel function is selected, in the
kernel feature space a nonlinear decision boundary
becomes a linear decision boundary with high proba-
bility [5]. In other words, decision trees are learning
easier decision boundary (linear decision boundary) in
the kernel features space than decision tree that are
learning nonlinear decision boundary. Hence, decision
trees trained on the extended feature space are likely
to be more accurate than decision trees trained on the
original features.

Decision trees do the feature selection at each node
[25]. This property is useful for datasets whose orig-
inal features are augmented with kernel features, as
kernel features will only be selected at the higher lev-
els of the trees when these features are better than
or similar to original features for classification [9,
25]. In case, an appropriate kernel is not selected and
non-informative kernel features are generated, and a
univariate decision tree is trained on extended feature
space, there is a strong probability, that the origi-
nal features are selected at higher levels as they are
more informative, whereas the kernel features will
not be selected or will be selected at lower levels as
they are less informative. In other words, these trees
will be similar to trees trained on the original fea-
ture space. Hence, while these trees can improve their
accuracy by using informative kernel features (gener-
ated due to appropriate kernel functions), they are not
affected much due to non-informative kernel features
(generated due to inappropriate kernel functions). This
property of these trees makes them quite robust to the
selection of inappropriate kernel functions.

The dimension of the new kernel feature space,
such that almost all the information of the dataset is
preserved in the kernel feature space, is an important
parameter [5]. This parameter is dataset specific, and
there is no method to calculate it [5]. If a decision tree
is trained with kernel features only and the dimension
of kernel space is less than the desired dimension, the
accuracy of the decision tree suffers as there is infor-
mation loss because of the inadequate dimension of the
kernel feature space. However, when decision trees are
trained on extended feature spaces, the kernel features
act as the extra information about the dataset. Hence,
even if the kernel feature space does not have all

@ Springer

the information about the dataset, it helps in creating
accurate decision trees.

(ii) Diverse Classifiers - Generation of diverse classi-
fiers is the second condition of effective ensembles.
In the proposed approach, the decision trees of exist-
ing ensemble methods are trained on extended feature
spaces. A modified version of an ensemble method
will be using the randomization mechanism of the
original method. For example, in the modified version
of Bagging, training data points for each decision tree
will be generated by using the same method as Bag-
ging, however, the feature space of these data points
has been extended in the modified version. The map-
ping [5] to create kernel features has random elements,
hence, it creates different kernel features in differ-
ent runs. Therefore, different extended feature spaces
(original features + kernel features), can be generated
with these different kernel features. This extra ran-
domness will reduce the correlation between individ-
ual trees and add more diversity in existing ensemble
methods.

In this paper, we show the combination of four popular
ensemble methods (RS, Bagging, AdaBoost.M1, Random
Forests) with kernel features.

3.4 RS+Kernel features

As discussed in Section 1, in RS ensemble method, each
member of an ensemble is trained on a different random
subspace. We propose that for each run of the RS, d kernel
features are created and combined with the random sub-
space for that run. A classifier is trained on this new dataset.
Results of all runs are combined to get the final results. We
present the proposed ensemble method RS + Kernel features
in Fig. 2.

3.5 (Bagging, Adaboost.M1, Random Forests) + Kernel
features

Bagging, AdaBoost.M1 and Random Forests are very pop-
ular ensemble methods. We study how these are affected by
kernel features. We follow the similar methodology as sug-
gested in Multiboosting [37]. In each run, d kernel features
are created and concatenated with the original features. As
in each run, different kernel features are created, hence dif-
ferent datasets are created by using these kernel features.
On each of these datasets, an ensemble is trained. We do the
same exercise for all the runs. Results of all runs are com-
bined to get the final results. The algorithm is presented in
Fig. 3.

Decision tree ensembles based on kernel features

Input- Original dataset T with m continuous features, k classes (c1,c2, .., cx), the size of

an ensemble L and a kernel K.
L the size of the ensemble.
Training Phase
for i=1...L do

Data Generation

1- Create d kernel features by using the mapping K F; (by selecting d points randomly)
proposed by Balcan et al. [5] and discussed in the Section 3. For a point x the d kernel
features will be K(z,z1), K(z,z2),...K(z,xq).
2- Use Random Subspaces (RS;) to create a dataset S;.

3- Concatenate S; and d kernel features to get the dataset T;.

Learning Phase

Treating dataset T; as continuous, learn D; decision tree on it.

end for

Classification Phase
For a given data point x
for i=1...L do

1- Convert x to x; by using Random Subspaces (RS;) and the kernel mapping (K F3).
2- Let p; j(x) be the probability for x; by the decision tree D; to the hypothesis that
x comes from class c¢;j. Calculate p; j(x) for all classes (j = 1..k).

end for

Calculate the confidence C(j) for each class ¢; (j = 1..k) by the average contribution

L
method, C(j) = %sz‘,j (z).
i=1

Class with the large_st confidence will be the class of x.

Fig. 2 The algorithm for RS + Kernel features ensembles

3.6 Complexity

We propose that the existing ensemble methods can be
benefited by using kernel features. However, creating new
features adds extra computational cost. The extended fea-
ture space has more dimension than the original feature
space. Hence, the tree learning phase with the extended fea-
ture space may need more computational resources than the
tree training phase with the original feature space.

4 Experiments

We first carried out experiments to analyze the performance
of the proposed ensemble methods with extended feature
spaces on synthetic datasets. Experiments were also car-
ried on other popular datasets. Experiments were carried out
by using WEKA software [17]. Following parameters were
used in the experiments;

(1) RS features size - Ho [19] achieve good results for
RS with half of the original features selected ran-
domly in each run. Therefore, we also used the same
value of original features for RS [19].

(ii) Bagging, Adaboost.M1 and Random Forests - The
modules of WEKA for these ensembles were used in

(iii)

(iv)

)
(vi)

the experiments. All the default parameters were used
in the experiments.

The dimension of kernel feature space - It is not
possible to know in advance the required dimen-
sion (as it depends on the margin) of the new
kernel feature space, such that all the information
of the original data is preserved in the new kernel
feature space. Balcan et. al. [5] carried out exper-
iments with 10 and 20 kernel features. Hence, we
used 10 kernel features in each run. As discussed
in Algorithm 2 (Fig 2), in each run 10 training
points were selected randomly and 10 kernel fea-
tures were generated (K (x, x;), similarity with the
point x;, is the i'" feature of the data point x). We
discuss the issue of choosing the number of kernel
features in detail in Section 4.3.

Classifier -J48 decision trees with unpruned option
were used (WEKA implementation of C4.5[25]) for
the experiments.

The size of the ensembles - The size of the ensem-
bles was set to 200.

(Bagging, Adaboost.M1, Random Forests) + ker-
nel features ensembles - In these methods, 14
(2000'5 ~ 14) runs were used. In each run, 14
(2000'5 ~ 14) trees were trained. In other words,

@ Springer

A. Ahmad

Input- Dataset T with m continuous features and k classes (c1,c2,..,¢x), L the size of
the ensemble and a given kernel K. M is the size of the individual ensemble.

Training Phase
for i=1...|L/M| do
Data Generation

1- Create d kernel features by using the mapping K F; (by selecting d points randomly)
proposed by Balcan et al. [5] and discussed in the section 2. For a point z the d kernel
features will be K(z,z1), K(z,22),..K(z,zq).
2- Concatenate 1" and d kernel features to get the m + d dimensional dataset T;.
3- Learn F; an individual ensemble of size M on T;.

end for

Classification Phase
For a given data point x
for i=1...|L/M| do

1- Convert x into a m+d dimensional data point x; by using the mapping K F; (original

features + kernel features).

2- Let p; j(x) be the probability for x; by the ensemble E; to the hypothesis that x
comes from class ¢;. Calculate p; j(x) for all classes (j = 1..k).

end for

Calculate the confidence C(j) for each class ¢; (j = 1..k) by the average contribution

method,

L
C() = 17y > Pivi (@)-
=1

The class with the largest confidence will be the class of x.

Fig. 3 The algorithm for Bagging, Adaboost.M1, Random Forests) + Kernel features

(g-)

in each ensemble 196 trees were created. The size
parameters were selected such that almost 200 trees

were created in each ensemble.
The final result - Each member decision tree gives a

classification probability for each class. These prob-
abilities are added and the class with the highest

(vii)

summation is chosen as the class of the given data
point. The framework of proposed ensembles with
the parameters used in the experiments is given in
Fig. 4.

Statistical test -Results were compared by using t-
test with 95% confidence interval.

For combining kernel

Original features
(m features)

For combining kernel

features with Random
Subspace ensembles

Randomly selected features
(We selected half of the features)

features with Bagging,
AdaBoost.M1, Random
Forests Ensembles

d Kernel features
(We selected d as 10)

Randomly selected
original features + Kernel features
(m/2 + 10 features)

Original features + Kernel features

(m + 10 features)

l

Train a decision tree

Train an ensemble (Bagging,
AdaBoost.M1, Random Forests) of
size 14.

Fig. 4 The framework for training a classifier for the proposed ensemble methods in the experiments.

@ Springer

Decision tree ensembles based on kernel features

0.9F B

0.7 + decision boundary —H

0.6 4

> 0.5

0.4 B

0.3 q

0.2 q

0.1F B

(a) + decision surface

0.9 b
0.8 b
07

——— y = x decision boundary

0.6 b

0.4 Bl

0.3 4

0.2 Bl

01 Bl

0 L L L L L L L L L
0 0.1 0.2 03 0.4 05 0.6 07 0.8 0.9 1

X

(c) y=x decision surface

Fig. 5 Decision surfaces of synthetic datasets.

4.1 Experiments with synthetic datasets

We carried out experiments with synthetic datasets with dif-
ferent decision boundaries to understand which kinds of
decision boundaries, decision tree ensembles with extended
feature spaces are useful. These datasets have linear and
nonlinear decision boundaries. We created following four
two-dimensional datasets, with two features(x and y; data
points were created with 0 <= x <= land 0 <=y
<=1.

(i) + decision boundary - This dataset has four classes.
Points with x<=0.5 and y<=0.5 are placed in class
1. Class 2 has points with x>0.5 and y<=0.5. Class 3
has points with x<=0.5 and y>0.5. Points with x>0.5
and y>0.5 are placed in class 4. This dataset has an

orthogonal decision boundary as shown in Fig. 5 a.
(i) y > 2x decision boundary -Data points with y>2x

are labeled as one class and all other points are placed
in the other class. It is a linear and non-orthogonal

0.8 Bl
0.7 Bl
y = 2x decision boundary
0.6 Bl
> 05F Bl
041 Bl

031 B

0.2 4

.
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

(b) y>2x decision surface

1

09F

0.8

07 *_\
0.6 Circular decision boundaN

> 0.5
041
0.3
0.2

0.1

0

.
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

(d) Circular decision surface

decision boundary. The decision boundary is given in
Fig.5b.

(i) y = x decision boundary - All the points with
y>x are placed in one class and all other points are
placed in the other class. The dataset has a diagonal
decision boundary. It is a linear and non-orthogonal
decision boundary, however, it is more dissimilar to
the orthogonal decision boundary than y > 2x deci-
sion boundary is. The decision boundary is given in
Fig. 5c.

(iv) Circular decision boundary - Data points with x>+
y%) > 0.5 are placed in one class all other points were
placed in another class. It was a nonlinear decision
boundary. The decision boundary is given in Fig. 5d.

In each run, 500 data points were created randomly for
training and 5000 data points were created randomly for
testing. 10 runs were done for each dataset, each run had dif-
ferent training and testing data points.. For datasets with lin-
ear decision boundaries, a linear kernel (K (x, y) = x7 y+1)

@ Springer

A. Ahmad

Table 1 Average classification errors (in % with s.d. in brackets) for different ensemble methods for different decision surfaces. ‘+/-* shows
that the performance of an ensemble method with extended feature space is statistically better/worse than that of that ensemble method with the

original feature space

Decision Bagging Bagging AdaBoost.M1 AdaBoost. M1 Random Forests Random Forests
boundary +Kernel + Kernel features

features features
+ 0(0.0) 0(0.0) 0(0.0) 0(0.0) 0(0.0) 0(0.0)
y>2x 3.1(0.3) 2.9(0.2) 2.7(0.2) 2.7(0.2) 2.6(0.2) 2.5(0.2)
y=x 0.5(0.1) 3.1(0.3)(+) 0.6(0.1) 3.4(0.3)(+) 0.7(0.1) 3.3(0.1)(+)
Circular 0.9(0.2) 2.40.4)(+) 1.0(0.2) 2.5(0.3)(+) 0.9(0.3) 2.6(0.3)(+)

was selected, whereas for the dataset with nonlinear deci-
sion boundary, Gaussian kernel (K (x,y) = exp(—||x —
y11?)) was used. For the above described datasets, we did
not perform the experiments for the RS ensemble method as
there were only two attributes in each dataset. The average
results of 10 runs for each dataset are presented in Table 1,
which suggest that for the dataset with orthogonal decision
boundary (+ decision boundary) and the dataset with deci-
sion boundary is not very different than orthogonal decision
boundary (y>2x), the performance of ensemble methods
with extended feature spaces was statistically similar to the
performance of original ensemble methods. Whereas for
diagonal decision boundary (y=x) and nonlinear decision
boundary (circular decision boundary) ensemble methods
with extended spaces performed statistically better than

boundaries, and for nonlinear decision boundaries. Kernel
functions are used to represent complex decision bound-
aries, hence it is expected that kernel features improve
the representational power of decision tree ensembles.
This is the reason for the success of the decision tree
ensembles with extended feature spaces for these decision
boundaries.

4.2 Comparative study with benchmark datasets

Experiments were carried out on popular datasets to study
the following points;

(i) The performance of decision tree ensembles based on
kernel features only.

original ensemble methods. (i) The effect of kernel features on existing ensemble
These results suggest that ensemble methods with ext- methods. In other words, several existing ensemble
ended feature spaces are useful for linear decision bound- methods with original features are tested against their
aries which are very different from orthogonal decision versions with extended feature spaces.
Table 2 The information
about datasets used in the Dataset Training Testing No. of No. of sets of
experiments [26] data points data points features training points
and testing
points
Banana 400 4900 2 100
Breast-Cancer 200 77 9 100
Diabetes 468 300 8 100
Flare-Solar 666 400 9 100
German Credit 700 300 20 100
Heart 170 100 13 100
Image 1300 1010 18 20
Ringnorm 400 7000 20 100
Splice 1000 2175 60 20
Thyroid 140 75 5 100
Titanic 150 2051 3 100
Twonorm 400 7000 20 100
Waveform 400 7000 20 100

@ Springer

Decision tree ensembles based on kernel features

Table 3 Average classification errors (in % with s.d.) in brackets for different ensemble methods for different datasets (RS ensembles are not
created for the Banana dataset as it has only 2 features). ‘+/-” shows that the performance of ensemble with kernel features only is statistically
better/worse than that algorithm for that dataset. The result in bold shows the winning approach

Dataset Ensemble Random Bagging Random AdaBoost.M1

with kernel subspace (Rs) forests

features only
Banana 11.2(0.5) — 13.2(.6)(+) 13.4(7)(+) 13.3(0.7)(+)
Breast-Cancer 29.4(4.8) 25.0(4.3) 28.8(4.5) 26.5(4.3) 30.3(4.9)
Diabetes 25.3(1.8) 25.9(2.2) 24.3(2.2) 24.1(2.0) 25.6(1.8)
Flare-Solar 35.8(1.8) 35.3(2.7) 34.6(2.4) 35.7(2.2) 36.1(1.8)
German Credit 28.3(2.4) 25.1(2.3) 23.9(2.1) 22.2(2.2) 23.6(2.1)
Heart 18.1(3.6) 17.2(3.9) 19.5(3.9) 17.9(3.4) 19.8(3.5)
Image 6.3(1.0) 2.0(0.3)(—) 2.2(0.5)(—) 1.6(0.5)(—) 1.4(0.5)(—)
Ringnorm 1.5(0.1) 5.4(0.5)(+) 9.2(0.9)(+) 6.9(0.7)(+) 3.500.4)(+)
Splice 22.1(1.1) 2.8(0.3)(—) 4.5(0.8)(—) 3.6(0.6)(—) 3.5(0.8)(—)
Thyroid 5.12.7) 5.8(2.5) 7.9(2.8) 5.3(2.3) 5.2(2.5)
Titanic 22.6(1.1) 25.8(3.4) 22.5(1.3) 22.4(1.5) 22.6(1.2)
Twonorm 2.5(0.2) 5.1(0.4)(+) 7.2(0.5)(+) 4.8(0.3)(+) 3.6(0.2)(+)
Waveform 10.0(0.5) 12.0(0.6)(+) 12.9(0.7)(+) 11.5(0.6)(+) 11.1(0.6)(+)
Win/Draw/Loss 3/7/2 47772 47772 41712

We carried out experiments on benchmark datasets pre-
sented in [26]. Information about these datasets is presented
in Table 2. Each dataset has many sets of training data points
and testing data points (the last column of Table 2). All
the sets of training data points and testing data points of
the datasets are available online (http://www.raetschlab.org/
Members/raetsch/benchmark). For each dataset, we carried
out experiments on all the sets of training data points and
testing data points. For example, Banana dataset had 100
sets of training data points and testing data points. Hence,
for Banana dataset, 100 runs were carried out. The average
results of different runs on different datasets are presented.
We used the same radial basis function kernel functions as
suggested by Ratsch et al. in [26].

Table 3 presents the comparative study of decision tree
ensembles created by kernel features only against other
ensemble methods. Ensembles created by kernel features
performed statistically better than other ensemble meth-
ods for four datasets (Banana, Ringnorm, Twonorm and
Waveform). Whereas for two datasets (Image and Splice),
these ensembles performed statistically worse than other
ensemble methods.

There are two important parameters in the proposed
method; the kernel function and the dimension of the
new kernel features space. If an appropriate kernel is not
selected, then the kernel features are very informative.
Hence, ensembles with kernel features only are not very
accurate. This is true for Splice dataset [26]. For Image
dataset, the dimension of the kernel space may be the

reason for the poor performance of the ensembles with
kernel features only (this point will be discussed later).

The other approach that we proposed, was a combina-
tion of kernel features with existing ensemble methods.
Table 4 presents the results of RS+kernel features and the
RS ensemble method. For four datasets (Image, Ringnorm,

Table 4 Average classification errors (in % with s.d.) in brackets
for RS + Kernel features and RS methods for different datasets (RS
ensembles are not created for the Banana dataset as it has only 2 fea-
tures). ‘4+/-" shows that the performance of RS + Kernel features is
statistically better/worse than that RS for that dataset. The result in
bold shows the winning approach

Dataset RS + Kernel features RS

Banana 11.2(0.5) -
Breast-Cancer 27.2(4.2) 25.04.3)
Diabetes 24.4(1.8) 25.9(2.2)
Flare-Solar 35.7(2.4) 35.3(2.7)
German Credit 24.1(2.2) 25.1(2.3)
Heart 17.6(3.5) 17.2(3.9)
Image 1.6(0.3) 2.000.3)(+)
Ringnorm 1.5(0.1) 5.4(0.5)(+)
Splice 3.2(0.5) 2.8(0.3)(—)
Thyroid 5.1(2.6) 5.8(2.5)
Titanic 22.5(1.1) 25.8(3.4)
Twonorm 2.5(0.2) 5.1(0.4)(+)
Waveform 10.2(0.5) 12.0(0.6)(+)
Win/Draw/Loss 4/7/1

@ Springer

http://www.raetschlab.org/Members/raetsch/benchmark
http://www.raetschlab.org/Members/raetsch/benchmark

A. Ahmad

Table 5 Average classification errors (in % with s.d.) in brackets for
Bagging + Kernel features and Bagging for different datasets. ‘+/-’
shows that the performance of Bagging + Kernel features is statisti-
cally better/worse than that Bagging for that dataset. The result in bold
shows the winning approach

Table 6 Average classification errors (in % with s.d.) in brackets
for AdaBoost.M1 + Kernel features and AdaBoost.M1 for different
datasets. ‘+/-> shows that the performance of AdaBoost.M1 + Kernel
features is statistically better/worse than that AdaBoost.M1 for that
dataset. The result in bold shows the winning approach

Dataset Bagging + Bagging Dataset AdaBoost.M1 + AdaBoost.M1
Kernel features Kernel features
Banana 11.5(0.5) 13.2(.6)(+) Banana 11.9(0.6) 13.3(0.7)(+)
Breast-Cancer 28.1(4.1) 28.8(4.5) Breast-Cancer 27.7(4.2) 30.3(4.9)
Diabetes 24.2(2.3) 24.3(2.2) Diabetes 24.9(1.6) 25.6(1.8)
Flare-Solar 35.3(2.2) 34.6(2.4) Flare-Solar 36.0(2.1) 36.1(1.8)
German Credit 22.9(1.9) 23.9(2.1) German Credit 22.9(2.0) 23.6(2.1)
Heart 18.5(3.7) 19.5(3.9) Heart 18.6(3.1) 19.8(3.5)
Image 2.1(0.4) 2.2(0.5) Image 1.3(0.4) 1.4(0.5)
Ringnorm 1.6(0.1) 9.2(0.9)(+) Ringnorm 1.6(0.2) 3.5(0.4)(+)
Splice 4.7(0.9) 4.5(0.8) Splice 3.2(0.7) 3.5(0.8)
Thyroid 6.4(1.8) 7.9(2.8) Thyroid 4.8(2.1) 5.2(2.5)
Titanic 22.4(1.3) 22.5(1.3) Titanic 22.5(1.1) 22.6(1.2)
Twonorm 2.8(0.2) 7.2(0.5)(+) Twonorm 2.8(0.2) 3.6(0.2)(+)
Waveform 11.1(0.6) 12.9(0.7)(+) Waveform 10.5(0.5) 11.1(0.6)(+)
Win/Draw/Loss 4/9/0 Win/Draw/Loss 4/9/0

Twonorm and Waveform) RS+kernel features performed
better than the RS method. Interestingly, for Image dataset,
RS + kernel features performed statistically better than RS.
The dimension of kernel space (we selected the dimension
as 10) may be less than the required value, however, as they
are combined with the original feature, they help in getting
better performance. For Splice dataset, RS + kernel features
performed statistically worse than the RS method, however,
its performance (error 3.2%) was better than the ensemble
based on kernel features only (error 22.1%).

Table 5 presents the results of Bagging + Kernel features
and Bagging ensemble methods. For four datasets (Banana,
Ringnorm, Twonorm and Waveform) Bagging + kernel fea-
tures performed statistically better than Bagging. For all
other datasets, including Image dataset and Splice dataset,
Bagging + Kernel features performed similar to Bagging.
The same behavior is observed for AdaBoost.M1 + Kernel
features vs AdaBoost.M1 (Table 6) and Random Forests+
Kernel features vs Random Forests (Table 7). These results
suggest that these ensemble methods are likely to work
better than or similar to original ensemble methods (Bag-
ging, Adaboost.M1 and Random Forests). Hence, when
kernel features are combined with these ensemble methods,
it becomes robust to the choice of the kernel function and
the dimension of kernel space. From these results, we can-
not conclude the effect of the size of training datasets on the
performance of ensembles as many factors work together
(e.g., the selected kernel, the dimension of the new feature
space). For example, the size of the splice training dataset

@ Springer

is the second largest of datasets we studied; however, we
observed that generally the performance of ensemble meth-
ods degrades slightly with kernel features. It is mainly due
to the selection of an inappropriate kernel. This example
suggests that it is difficult to find the relationship between
the size of training data and the performance of ensembles

Table 7 Average classification errors (in %) with s.d. in brackets of
Random Forests + Kernel features and Random Forests for different
datasets. ‘+/-” shows that the performance of Random Forests + Kernel
features is statistically better/worse than that Random Forests for that
dataset. The result in bold shows the winning approach

Dataset Random Forests + Random
Kernel features Forests
Banana 12.1(0.6) 13.4(.7)(+)
Breast-Cancer 29.9(4.2) 26.5(4.3)
Diabetes 24.7(1.9) 24.1(2.0)
Flare-Solar 35.3(2.1) 35.7(2.2)
German Credit 23.1(1.9) 22.2(2.2)
Heart 17.8(3.2) 17.9(3.4)
Image 1.5(0.5) 1.6(0.5)
Ringnorm 1.6(0.2) 6.9(0.7)(+)
Splice 3.9(0.5) 3.6(0.6)
Thyroid 5.52.1) 5.3(2.3)
Titanic 22.3(1.4) 22.4(1.5)
Twonorm 2.7(0.2) 4.8(0.3)(+)
Waveform 10.5(0.4) 11.5(0.6)(+)
Win/Draw/Loss 4/9/0

Decision tree ensembles based on kernel features

with kernel features. If we consider the datasets in which the
results with kernel features significantly improved, except
RS, all ensemble methods improved by using kernel features
on the same datasets (RS has no result on Banana dataset);
Banana, Ringnorm, Twonorm and Waveform. This suggests
that the kernel features are useful for decision boundaries
which are present in these datasets. We observed that Bag-
ging ensemble method had more improvement on these
datasets as compared to other ensemble methods. For exam-
ple, for Ringnorm dataset, the average classification error
for Bagging method with kernel features decreases from 9.2
% to 1.6 %, whereas this improvement in RS was from 5.4
% to 1.5 %, in AdaBoost.M1 from 3.5 % to 1.6 % and
for Random Forests from 5.4 % to 1.5 %. There is another
observation that for all the datasets, AdaBoost.M1 improved
with kernel features, however the improvement was small.

On the basis of our observations, we infer that
AdaBoost.M1 is more likely to improve with kernel fea-
tures, however Bagging is more likely to have larger
improvement for datasets, on which all the ensemble meth-
ods have significant improvement with kernel features.

4.3 Study of the dimension of the kernel feature space

As discussed earlier that the required dimension of the new
kernel feature space is dependent on the margin [5], hence,
it is not possible to know in advance the required dimension.
If the dimension of the kernel feature space is less than the
desired dimension, accurate classification results may not
be obtained because all the information of the data is not
preserved in the kernel feature space. To study this problem,
the similarity of this approach with kernel-PCA method
[29] was used. The classification by using a linear classifier
with leading kernel PCA features has shown good perfor-
mance [29]. This suggests that in leading kernel features the
classification problem can be assumed to be linearly sep-
arable (similarly, in the method proposed by Balcan et al.
[5] the problem is linearly separable in the kernel feature
space). “What should be the minimum number of the ker-
nel features to recover most of the information required for
the classification task” has been an active research area in
kernel-PCA field [6]. Braun et al. [6] propose an algorithm
for kernel-PCA to estimate the dimension (the number of
leading kernel PCA components relevant for accurate clas-
sification) and expected error for a learning problem. They
calculate the minimum dimensions for the same datasets
with which we did our experiments. We present their results
in Table 8, which suggest that for Image dataset and Splice
dataset, the estimated dimensions are relatively large. As
in our experiments, we created only 10 new kernel fea-
tures, the poor performance of ensembles created by using
kernel features only on these datasets may be due to this
reason.

In these experiments, we wanted to analyze the effect
of the dimension of the kernel feature space on the ensem-
ble accuracies. We varied the dimension of the new feature
space, and studied its effect on the performance of ensem-
bles. Four datasets; Image, Splice, Twonorm and Wave-
form were used in the experiments. Two of these datasets
(Image and Splice) have relatively larger estimated dimen-
sions (minimum features to preserve all the information),
whereas, the other two datasets (Twonorm and Waveform)
have relatively smaller estimated dimensions.

We created ensembles with 10, 50 and 100 (all but one
dataset have estimated dimensions less than 100 (Table 8))
kernel features for each decision tree. Decision trees were
trained on kernel features only. Experiment settings were
similar to the previous experiment. Results suggest (Table 9)
that for datasets (Image and Splice) which have larger esti-
mated dimensions, the performance of ensembles improved
with the larger number of kernel features for each deci-
sion tree. This indicates that for those datasets 10 kernel
features were not enough to preserve all the information.
Hence, more kernel features were required. Whereas, for
datasets with smaller estimated dimensions (Twonorm and
Waveform), the performance of ensembles degraded little
with decision trees having more than 10 kernel features. We
premise that when 50 or 100 kernel features were created
for each decision tree, some of these features might be non-
informative, that had a negative effect on the performance
of the ensembles. Ensembles with decision trees with 100
kernel features showed more classification errors than that
of ensembles with decision trees with 50 kernel features.
This result validates our premise that if we create kernel fea-
tures more than the expected dimension of datasets, some

Table 8 The estimated dimensions of different datasets in kernel PCA
spaces, taken from [6]

Dataset Estimated
dimensions

Banana 26

Breast-Cancer 2

Diabetes

Flare-Solar 10

German Credit 12

Heart 5

Image 368

Ringnorm 37

Splice 89

Thyroid 18

Titanic

Twonorm

Waveform 23

@ Springer

A. Ahmad

Table 9 Average classification

errors (in % with s.d. in Dataset Ensembles with Ensembles with Ensembles with
brackets) of ensembles with decision trees decision trees decision trees
decision trees trained with 10, trained with trained with trained with
50 and 100 new kernel
features. The result in bold 10 kernel features 50 kernel features 100 kernel features
shows best performance
Image 6.3(1.0) 5.4(0.9) 5.1(0.8)
Splice 22.1(1.1) 17.1(1.2) 16.6(1.1)
Twonorm 2.5(0.2) 2.6(0.1) 2.8(0.2)
Waveform 10.0(0.5) 10.1(0.4) 10.4(0.4)

non-informative features are generated and these features
have adverse effect on the performance of ensembles.

This experiment verifies that for ensembles with deci-
sion trees with kernel features only, the dimension of the
kernel feature space is an important parameter and the num-
ber of features less than the number of required features
may lead to poor results. Results presented in the Table 4 to
Table 7 show that one of the proposed ensemble methods,
the combination of existing ensemble methods with kernel
features, performed well even with default number (10) of
kernel features for the datasets (Image and Splice) having
large estimated dimensions. This demonstrates that the pro-
posed approach of creating ensembles with extended feature
spaces is quite robust to the characteristics of the datasets.

5 Conclusion and future work

Ensemble methods and kernel machines are two impor-
tant research areas in the machine learning field. Ensemble
methods are successful as they use the combined strength of
different classifiers. Kernel machines are successful because
they use the excellent representational power of kernels. In
this paper, we first proposed that kernel features [5] can be
used to create decision tree ensembles. We also studied their
properties and suggested to combine the existing ensem-
ble methods with kernel features. These kernel features
encourage extra diversity in the ensembles. They also help
in creating accurate decision trees. Experimental results
demonstrate that ensemble methods with extended feature
spaces match or outperform ensemble methods with orig-
inal features. Experiments also suggest that these ensem-
ble methods are more useful for non-orthogonal decision
boundaries and nonlinear decision boundaries.

In this paper, we carried out experiments with decision
trees. However, the proposed approach is a general frame-
work for creating ensembles and can be used with any
classifier. In the future research, we will study other classi-
fiers with low representational power like linear classifiers.
Some of the similarity functions cannot be used in SVM as
they do not fulfill all the conditions of kernels (continuous,
symmetric, positive semi-definitive). The proposed methods

@ Springer

can be used with any similarity function as similar map-
pings have been proposed for similarity functions [4]. We
will do the experiments with different similarity functions
that are not kernel functions. This will be another area of
future research.

References

1. Ahmad A, Brown G. Article in press
2. Amasyali M, Ersoy O. Article in press
3. Arriaga R, Vempala S (2006) An Algorithmic Theory of
Learning:Robust Concepts and Random Projection. Mach Learn
63(2):161-182
4. Balcan MF, Blum A (2006) On a Theory of Learning with Similar-
ity Functions. In:Proceedings of the 23rd International Conference
on Machine Learning
5. Balcan MF, Blum A, Vempala S (2006) Kernels as Features: On
Kernels, Margins, and Low-dimensional Mappings. Mach Learn
65:79-94
6. Braun ML, Buhmann JM, Muller KR (2009) On Relevant Dimen-
sions in Kernel Feature Spaces.] Mach Learn Res 9:1875—
1908
7. Breiman L (1996) Bagging Predictors. Mach Learn 24(2):123-
140
8. Breiman L (2001) Random Forests. Mach Learn 45(1):5-32
9. Breiman L, Friedman J, Olshen R, Stone C (1984) Classification
and Regression Trees. Wadsworth International Group, CA
10. Burges CJC (1998) A Tutorial on Support Vector Machines for
Pattern Recognition. Data Min Knowl Disc 2:121-167
11. Caruana R, Niculescu-Mizil A. (2006) An Empirical Comparison
of Supervised Learning Algorithms
12. Dietterich TG (2000) Ensemble Methods in Machine Learning
13. Diosan L, Rogozan A, Pecuchet J (2012) Improving Classification
Performance of Support Vector Machine by Genetically Optimis-
ing Kernel Shape and Hyper-parameters. Appl Intell 36(2):280-
294
14. Freund Y, Schapire RE (1996) Experiments with a New Boost-
ing Algorithm. In Proceedings of the Thirteenth International
Conference on Machine Learning, pages 148—156
15. Gama J, Liu X, Cohen P (1997). In: In Second International
Symposium on Advances in Intelligent Data Analysis pages 187—
198 (ed) Oblique Linear Tree, Springer-Verlag
16. Geurts P, Ernst D, Wehenkel L (2006) Extremely Randomized
Trees. Mach Learn 63(1):3-42
17. Hall M, Frank E, Holmes Geoffrey, Pfahringer B, Reutemann
P, Witten IanH (2009) The WEKA Data Mining Software: An
Update. SIGKDD Explor 11(1):10-18
18. Hansen LK, Salamon P (1990) Neural Network Ensembles. IEEE
Trans on Pattern Anal and Mach Intell 12(10):993-1001

Decision tree ensembles based on kernel features

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

Ho TK (1998) The Random Subspace Method for Constructing
Decision Forests. IEEE Trans on Pattern Anal and Mach Intell
20(8):832-844

Kim H, Pang S, Je H, Kim D, Bang S (2003) Constructing
Support Vector Machine Ensemble. Pattern Recog 36(12):2757—
2767

Kuncheva LI (2004) Combining Pattern Classifiers: Methods and
Algorithms. Wiley-Interscience

Mansilla EB, Ho TM (2004) On Classifier Domains of Com-
petence. In Proceedings of the 17th International Conference on
Pattern Recognition (ICPR04), pages 136-139

Maudes J, Rodrguez JJ, Garca-Osorio C, Pardo C (2011) Random
Projections for Linear SVM Ensembles. Appl Intell 34(3):347-
359

Polikar R (2006) Ensemble Based Systems in Decision Mak-
ing. IEEE Circuits and Systems Magazine, pages 21-45.Third
Quarter

Quinlan JR (1993) C4.5: Programs for Machine Learning. Morgan
Kaufmann Inc., San Francisco,CA,USA

Ritsch G, Onoda T, Miller K-R (2001) Soft margins for
AdaBoost. Mach Learn 42(3):287-320

Rodriguez JJ, Kuncheva LI, Alonso CJ (2006) Rotation Forest:
A New Classifier Ensemble Method. IEEE Trans on Pattern Anal
and Mach Intell 28(10):1619-1630

Rwebangira MR (2008) Techniques for Exploiting Unlabeled
Data. PhD thesis, School of Computer Science. Carnegie Mellon
University

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Scholkopf B, Smola AJ, Muller K (1998) Nonlinear Compo-
nent Analysis as a kernel Eigenvalue problem. Neural Comput
10:1299—1319

Statnikov A, Wang L, Aliferis CF (2008) A Comprehensive Com-
parison of Random Forests and Support Vector Machines for
Microarray-based Cancer Classification. BMC Bioinforma 9(319)
Truong Y, Lin X, Beecher C (2004) Learning a Complex
Metabolomic Dataset Using Random Forests and Support Vector
Machine. In Proceedings of the Tenth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining
Seattle, Washington, USA, August 22-25, 2004, pages 835-840
Tumer K, Ghosh J (1996) Error Correlation and Error Reduction
in Ensemble Classifiers. Connect Sci 8(3):385-404

Valentini G, Dietterich T (2004) Bias-variance Analysis of Sup-
port Vector Machines for the Development of Svm-based Ensem-
ble Methods. J] Mach Learn Res:725-775

Vapnik V (1998) Statistical Learning Theory. Wiley-Interscience,
New York

Wang C, You W (2013) Boosting-SVM:Effective Learning With
Reduced Data Dimension. Appl Intell 39(3):465-474

Wanga S, Mathewb A, Chenc Y, Xia L, Mab L, Lee J (April
2009) Empirical Analysis of Support Vector Machine Ensemble
Classifiers. Expert Syst Appl 9(3):6466-6476

Webb GI (2000) Multiboosting: A Technique for Combining
Boosting and Wagging. Mach Learn 40(2):159-196

Zhu M (2008) Kernels and Ensembles: Perspectives on Statistical
Learning. The American Stat 62:97-109

@ Springer

	Decision tree ensembles based on kernel features
	Abstract
	Introduction
	Contributions

	Related work
	Ensembles with extended feature spaces

	Ensemble methods with kernel features
	Kernel features
	An ensemble method with kernel features only
	Combining existing ensemble methods with kernel features
	RS+Kernel features
	(Bagging, Adaboost.M1, Random Forests) + Kernel features
	Complexity

	Experiments
	Experiments with synthetic datasets
	Comparative study with benchmark datasets
	Study of the dimension of the kernel feature space

	Conclusion and future work
	References

