
Pattern Recognition Letters 32 (2011) 1062–1069
Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier .com/locate /patrec
A k-means type clustering algorithm for subspace clustering of mixed numeric and
categorical datasets

Amir Ahmad a,⇑, Lipika Dey b

a Faculty of Computing and Information Technology, King Abdulaziz University, Rabigh, Saudi Arabia
b Innovation Labs, Tata Consultancy Services, New Delhi, India

a r t i c l e i n f o a b s t r a c t
Article history:
Received 3 July 2010
Available online 21 February 2011
Communicated by Debasis Chaudhuri

Keywords:
Clustering
Subspace clustering
Mixed data
Categorical data
0167-8655/$ - see front matter � 2011 Elsevier B.V. A
doi:10.1016/j.patrec.2011.02.017

⇑ Corresponding author. Tel.: +91 9670296804; fax
E-mail addresses: amirahmad01@yahoo.co.in, a

Ahmad), lipikadey@gmail.com (L. Dey).
Almost all subspace clustering algorithms proposed so far are designed for numeric datasets. In this
paper, we present a k-means type clustering algorithm that finds clusters in data subspaces in mixed
numeric and categorical datasets. In this method, we compute attributes contribution to different clus-
ters. We propose a new cost function for a k-means type algorithm. One of the advantages of this algo-
rithm is its complexity which is linear with respect to the number of the data points. This algorithm is
also useful in describing the cluster formation in terms of attributes contribution to different clusters.
The algorithm is tested on various synthetic and real datasets to show its effectiveness. The clustering
results are explained by using attributes weights in the clusters. The clustering results are also compared
with published results.
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1. Introduction

The problem of clustering in general deals with partitioning a
data set consisting of n points embedded in m-dimensional space
into k distinct set of clusters, such that the data points within
the same cluster are more similar to each other than to data points
in other clusters (Jain and Dubes, 1988). Conventional clustering
methods do not work well for high dimensional sparse data as in
the high dimensions the distances between any two data objects
become same (Agrawal et al., 1998). The subspace clustering is a
solution proposed for the high dimensional sparse datasets. The
aim of the subspace clustering is to find clusters from the subspac-
es of the data instead of the entire data space. There are two types
of subspace clustering algorithms. First type of subspace clustering
algorithms try to find out the exact subspaces of different clusters
(Goil et al., 1999; Sequeira and Zaki, 2004; Aggarwal and Yu, 2000).
The second type of algorithms cluster data points in the entire data
space but the different attributes contribute differently to the dif-
ferent clusters (Friedman and Meulman, 2004; Jing et al., 2007).

Almost all the subspace clustering algorithms proposed so far
are designed for numeric data (exception is CLICKS (Zaki et al.,
2007)). In this paper, we propose a k-means type clustering algo-
rithm for subspace clustering of mixed numeric and categorical
dataset. This is a second type of subspace clustering algorithm.
ll rights reserved.
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Another advantage of this algorithm is its complexity which is lin-
ear with respect to the number of the data points. Ahmad and Dey
(2007b) propose a k-means type clustering algorithm for mixed
data. Jing et al. (2007) propose an entropy weighting k-means clus-
tering of numeric high dimensional sparse dataset. They propose a
formula for computing the contributions of different attributes to
different clusters. We combine these two approaches to develop
a subspace clustering algorithm for mixed data. A new step has
been added to the algorithm proposed by Ahmad and Dey
(2007b) to compute the contributions of different attributes
(attributes weights) to different clusters. In Section 2, we present
related work. In Section 3, we describe our proposed algorithm.
In Section 4, we present results and discussion. Section 5 has con-
clusion and future work.
2. Related work

There are a large number of conventional clustering algorithms
for the numeric data (Jain and Dubes, 1988). Many clustering algo-
rithms have been proposed for pure categorical datasets. k-modes
(Huang, 1997), ROCK (Guha et al., 1999), COOLCAT (Barbara et al.,
2002), CACTUS (Ganti et al., 1999) are clustering algorithms for
pure categorical datasets. As the clustering algorithms have high
complexity, Chen et al. (2008) proposed a sampling-based algo-
rithm to improve the efficiency of these algorithms. They proposed
a mechanism to allocate each unlabeled data point into the corre-
sponding appropriate cluster based on the novel categorical clus-
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tering representative, which represents clusters by the importance
of the combinations of attribute values.

With the advent of very large databases containing mixed set of
attributes, the data mining community has been on the look-out
for good cost function for handling mixed data. Li and Biswas
(2002) present a Similarity Based Agglomerative Clustering (SBAC)
algorithm based on Goodall similarity measure (Goodall, 1966).
The clustering process is hierarchical. This algorithm works well
with mixed numeric and categorical attributes, though is computa-
tionally expensive. Huang (1997) propose a cost function that con-
siders numeric and categorical attributes separately. The cost
function is used in conjunction with a partitional clustering algo-
rithm. The cost function handles mixed datasets and computes
the distance between a data point and a centre of cluster in terms
of two distance values – one for the numeric attributes and the
other for the categorical attributes. Since it can be used with a part-
itional algorithm, it is cost-effective. Huang et al. (2005) propose a
k prototypes clustering method for handling mixed data. In this
method, attribute weights are automatically calculated based on
the current partition of data. These attributes weights are same
for all the clusters. Ahmad and Dey (2007b) propose a k-means
type clustering algorithm that overcomes the weaknesses of cost
function proposed by Huang (1997).

Many subspace clustering algorithms have been proposed for
the numeric datasets. CLIQUE (Agrawal et al, 1998), MAFIA (Goil
et al., 1999), and SCHSIS (Sequeira and Zaki, 2004) are the exam-
ples of the first type of subspace clustering. Methods like CLIQUE,
MAFIA and SCHISM that discretize the numeric data to find out
the dense regions rely on the dense region to be ordered, whereas
the categorical data has no ordering. Generally, researchers utilize
a density threshold to discover the dense regions in all subspaces,
Chu et al. (2010) proposed a method that use different density
thresholds to discover the clusters in different subspace cardinali-
ties. Chu et al. (2009) suggested a method that avoids redundant
clusters. Moise et al. (2009) carried out detailed experimental
study of different subspace clustering algorithms. They recom-
mended that techniques with low number of parameters should
be preferred.

All these subspace clustering algorithms can handle numeric
data only. Zaki et al. (2007) proposed a algorithm CLICKS, that finds
subspace clusters in categorical datasets based on a search for k-
partite maximal cliques but it is computationally expensive be-
cause mining all maximal cliques is an exponential time algorithm
in the worst case

Many algorithms have been proposed which fall in the second
type of subspace clustering (Friedman and Meulman, 2004; Jing
et al., 2007; Deng et al., 2010). In these algorithms different clus-
ters have different sets of contributions of different attributes in
a cluster formation. Recently, Jing et al. (2007) proposed a subspace
clustering algorithm that computes the contributions of different
attributes in formation of different clusters. The experimental re-
sults presented in their paper show the superiority of their ap-
proach over the other subspace clustering algorithms. The
complexity of this algorithm is linear with respect to the number
of the data points. That makes it a good candidate for large scale
datasets. In the next section, we discuss this algorithm in detail.

2.1. Jing et al. (2007) algorithm

Jing et al. (2007) proposed an entropy weighting k-means algo-
rithm for subspace clustering of high-dimensional numeric data. In
their proposed algorithm they have added an extra step in normal
k-mean clustering algorithm (MacQuuen, 1967). In this step, they
calculate the contribution of each attribute to each cluster. These
attribute weights are used to compute the cluster membership of
the data points.
In their proposed algorithm, they consider the attribute weight
as the probability of contribution of that attribute in forming a
cluster. The entropy of contribution of the attributes represents
the certainty of contribution of attributes in forming a cluster. They
add a new weight entropy term to the k-means clustering algo-
rithm cost function. They include attribute weights to the normal
k-mean distance function. They simultaneously minimize the
within cluster dispersion and maximize the negative weight entro-
py. The objective of the first minimization is similar to the k-means
clustering algorithm objective whereas the objective of maximiz-
ing the negative weight entropy is to induce more attributes to
contribute in formation of the clusters. Their cost function is pre-
sented in Eq. (2.1).
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Xk
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where
dit is the value of tth attribute value of ith data object.
Cjt is the value of tth attribute value of jth cluster center.
dji is the degree of the membership of the ith data object in jth
clusters,
kjt is the weight of the tth attribute to jth cluster.

The first term is the sum of the within cluster dispersion and the
second term represents the negative weight entropy. The positive c
controls the strength of the incentive for clustering on more
dimensions. They add one step in the standard k-means clustering
algorithm to compute attributes weights. The formula for comput-
ing klt is given by,

klt ¼ expð�Dlt=cÞ=
Xm

i¼1

expð�Dli=cÞ; ð2:2Þ

where Dlt ¼
Xn

i¼1

dliðdit � CltÞ2:

Their proposed algorithm is presented in Fig. 1.

3. The proposed subspace clustering algorithm for mixed
datasets

Ahmad and Dey (2007b) proposed a clustering algorithm-based
on the k-means paradigm that works well for data with mixed nu-
meric and categorical features. They propose a new cost function
and distance measure based on co-occurrence of attribute values.
The measure also takes into account the significances of the nu-
meric attributes in the dataset. Ahmad and Dey (2007b) define a
cost function for clustering mixed datasets. The proposed cost
function with n data objects and m attributes (mr numeric attri-
butes, mc categorical attributes, m = mr + mc (r or c in subscript or
superscript show that the attribute is numeric (r) or categorical(c))
is presented in Eq. (3.1), which is to be minimized. The cost func-
tion has two distinct components, one for handling numeric attri-
butes and another for handling categorical attributes.

f ¼
Xn

i¼1

#ðdi;CjÞ; ð3:1Þ



Fig. 1. Subspace clustering algorithm for numeric data proposed by Jing et al. (2007).
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where #ðdi;CjÞ is the distance of a data object di from the closest
cluster center Cj.#ðdi; CjÞis defined as

#ðdi;CjÞ ¼
Xmr

t¼1

ðwtðdr
it � Cr

jtÞÞ
2 þ

Xmc

t¼1

Xðdc
it; C

c
jtÞ

2
; ð3:2Þ

where
Pmr

t¼1ðwtðdr
it � Cr

jtÞÞ
2 denotes the distance of data point di from

its closest cluster center Cj for numeric attributes, wt denotes the
significance of the tth numeric attribute, which is to be computed
from the data set,

Pmc
t¼1Xðd

c
it;C

c
jtÞ

2 denotes the distance between
data point di and its closest cluster center Cj for categorical
attributes.

The distance function for categorical attributes does not assume
a binary or a discrete measure between two distinct values. Ahmad
and Dey (2007a) proposed a method to compute distance between
two attribute values of same attribute for unsupervised learning.
This approach is based on the fact that similarity of two attribute
values is dependent on their relationship with other attributes.
The dissimilarity between two categorical values is computed with
respect to every other attribute of data set, the average value of dis-
tances will give the distance between two categorical values in that
data set. This distance measure is used to compute the distance be-
tween two categorical values. The other important point in this
algorithm is the significance of the numeric attributes. As discussed
in (Ahmad and Dey, 2007a, b) an attribute plays a significant role in
clustering, provided any pair of its attribute values are well sepa-
rated against all attributes i.e. have an overall high value of distance
for all pairs of attribute values. They exploited this property to com-
pute the significance of an numeric feature. One may discretize nu-
meric features and compute the distance between each pairs. The
average value of these distances will be a good indicative of signif-
icance of features. However, while calculating the prototype of a
cluster and the distance of a data point from the cluster prototype
distance, they use non-discretized numeric variables as discretiza-
tion lead to the loss of information. In other words, in a discretized
dataset, all the points in a bin will be similar. One may argue that as
they are using discretized dataset for computing a significance of
attribute, there is an information loss in that step. We agree that
there will be an information loss. However, this step is only to com-
pute a significance of attribute. Hence, two different points of an
attribute will give different distances as desired. This algorithm
has 3 main steps:

1. It computes the distance between every pair of attribute values
of categorical attributes by using co-occurrence based approach
proposed by Ahmad and Dey (2007a, b). The distance between
the pair of values x and y of attribute Ai with respect to the attri-
bute Aj, for a particular subset w of attribute Aj values, is defined
as follows:
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dij
wðx; yÞ ¼ pðw=xÞ þ pð� w=yÞ � 1: ð3:3Þ

The distance between attribute values x and y for Ai with respect to
attribute Aj is denoted by dij(x, y), and is given by dij(x, y) = p(x/
x) + p(�x/y)�1, where x is the subset w of values of Aj that maxi-
mizes the quantity p(w/x) + p(�w/y). The distance between x and y
is computed with respect to every other attribute. The average va-
lue of distances will be the distance d(x, y) between x and y in the
dataset.
2. It computes the significance of each numeric attribute in the

dataset. To compute the significance of a numeric attribute, it
follows following steps;
(i) Discretize the numeric attribute.
(ii) Compute the distance between every pair of categorical val-

ues, using the same method already discussed.
(iii)
The average value of these distances is taken as the significance
of the attribute.

3. It computes the distance between the data points and the mod-
ified centers. In the proposed definition of cluster center,
though the central value of a numeric attribute is represented
by its mean, they use a different representation for categorical
attributes. The centre for a cluster X for categorical attributes
is represented as

1=NXhðN1;1;X;N1;2;X; . . . ;N1;p1;XÞ; . . . ðNi;1;X;Ni;2;X; . . . Ni;k;X; . . . ;

Nm;pi;X . . . ðNm;1;X;Nm;2;X; . . . ;Nm;pm;XÞi; ð3:4Þ

where NX is the number of data points in the cluster X, Ni,k,,X de-
notes the number of the data points in the cluster X, which have
the kth attribute value for the ith attribute, assuming that ith attri-
bute has pi different values. Thus the cluster center represents the
proportional distribution of each categorical value in the cluster.
The distance between a data point having ith categorical attribute
value X in the ith dimension (ith categorical attribute) and the cen-
ter of cluster C is defined as

XðX;CÞ ¼ ðNi;1;c=NcÞ � dðX;Ai;1Þ þ ðNi;2;c=NcÞ � dðX;Ai;2Þ � � �
þ ðNi;;t;c=NcÞ � dðX;Ai;tÞ þ ðNi;pi;c=NcÞ � dðX;Ai;piÞ; ð3:5Þ

where Ai,t is the tth attribute value of ith categorical attribute

3.1. The proposed algorithm

Motivated by the subspace clustering algorithm proposed by
Jing et al. (2007), we propose a modification in the distance mea-
sure proposed by Ahmad and Dey (2007b). We include attributes
weights to the distance, our proposed distance measure is,

#ðdi;CjÞ ¼
Xmr

t¼1

kjtðwtðdr
it � Cr

jtÞÞ
2 þ

Xmc

t¼1

kjtXðdc
it ;C

c
jtÞ

2
: ð3:6Þ

To compute attributes weights (kjt), similar to the method proposed
by Jing et al. (2007), we add a step in the algorithm proposed by Ah-
mad and Dey (2007b). Our proposed algorithm for the subspace
clustering for the mixed data is presented in Fig. 2.

3.2. The complexity of the proposed algorithm

The computational complexity of Ahmad and Dey (2007b) algo-
rithm is O(m2n + m2S3 + pn(kmr + kmcS)) which is linear with re-
spect to the number of the data elements. where n is the total
number of the data elements, m is the total number of attributes,
mr is the number of the numeric attributes, mc is the number of
the categorical attributes, and S is the average number of distinct
categorical values, k is the number of clusters and p is the number
of iterations. As we add one more step (the computation of the
attribute contribution to the clusters) that needs the computation
of distances from the center, the complexity of this step is
pn(kmr + kmcS) so the total complexity is
O(m2n + m2S3 + 2pn(kmr + kmcS)) which is linear with respect to
the number of data elements.
4. Experiments

In this section, we present the clustering results obtained by our
approach on some standard datasets. These datasets are taken
from the UCI repository (http://www.sgi.com/tech/mlc/db). To
judge the quality of clustering, we assume that we are given pre-
classified data and measure the ‘‘overlap’’ between an achieved
clustering and the ground truth classification.

Clustering error = The number of data points not in desired clus-
ters/The number of data points.

The class information is suppressed during clustering. Experi-
ments with low dimensional datasets give better visualization.
However, the algorithm has a positive parameter, c, that controls
the strength of the incentive for clustering on more dimensions.
There is no rule (Jing et al., 2007) that suggests exactly how many
features will take part in cluster formation. Hence, one has to do
trail and error method to look for the value of c that force the de-
sired attributes to to be part of the the cluster. If clusters are using
all the features it will become similar to the algorithm (Ahmad and
Dey, 2007b). As the purpose of the algorithm is to find out clusters
in subspaces, we presented the results on the synthetic data to
show that the proposed is able to find out the clusters with large
number of irrelevant features. In these experiments, the clustering
error was the main performance criterion; however, the proposed
algorithm also gives the insight about the cluster formation. Hence,
we also studied the weights of different attributes in different clusters.
All numeric attributes were normalized where the normalized va-
lue y of x (x belongs to ith attribute) was obtained as y = (x�xi,min)/
(xi,max�xi,min). The significance of numeric attributes are extracted
as discussed in Section 3.2. We used the equal width discretization
method for this purpose. We have two parameters one is c and an-
other is k (number of clusters). We studied the performance of our
proposed algorithm different datasets on different values of c, we
found that there was a cluster merging problem in some of data-
sets for small value of c (c < 5). We got consistent results with
c = 20. We carried out all the experiments with c = 20. For small
datasets, we kept k = 20 (except for the synthetic dataset), whereas
for large data set (mushroom) k = 40 was chosen. The large value of
k was chosen for better study of clusters formation. For every data-
set the clustering algorithm was run 100 times and average results
are presented.
4.1. Synthetic data

We carried out controlled experiment with the Breast Cancer
dataset. It has 699 data points described by 9 categorical attributes.
It has 2 clusters; Benign (458 data points) and Malignant (241). We
did the experiments by adding some irrelevant attributes. These
irrelevant attributes values were number 1–10 generated ran-
domly. These values were treated as categorical values. We studied
how the performance of proposed algorithm was affected by sub-
space ratios.

The subspace ratio s is defined as

s ¼
Xk

i¼1

mi=km;

where mi is the number of relevant dimensions in the ith cluster, m
is the total number of the attributes.

http://www.sgi.com/tech/mlc/db


Fig. 2. Our proposed algorithm.
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As we know clusters are defined by at most 9 attributes (origi-
nal attributes) the m1 and m2 are at most 9, so s <= 18/2(9 + new
added attributes). We carried out the experiments on different
subspace ratios when k = 2. Average clustering results are pre-
sented in Table 1. Table 1 shows the effect of the subspace ratios
on clustering errors. There is a slight decrease in the average clus-
tering accuracy as we decrease the subspace ratios. However, our
proposed algorithm is capable of finding subspace clusters.
Table 1
Clustering results for different subspace ratios for the synthetic dataset.

Subspace ratio (Atmost) Clustering error in%

1 5.4
0.5 5.8
0.3 6.1
0.1 6.3
4.2. Vote dataset

This is a pure categorical data set with 435 data points de-
scribed by 16 attributes. These data points belong to two classes;
Republican (168 data points) and Democrats (267 data points).
With k = 20, we got 14 clusters. The clustering results are pre-
sented in Table. 2. We got 21 data points not in desired clusters. In
other words, the clustering error is 4.8%. Zaki et al. (2007) got the
Table 2
The confusion matrix for the Vote dataset.

Cluster No. 1 2 3 4 5 6 7 8

Republican 5 0 62 0 6 0 73 0
Democrat 1 7 4 147 1 27 2 2

Cluster No. 9 10 11 12 13 14

Republican 2 8 0 3 7 0
Democrat 1 2 10 13 45 5
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Fig. 3. Attribute weights for cluster no.3 (the left graph) and cluster no.7 (the right graph).
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Fig. 4. Attribute weights for the cluster 4 (the Democrat cluster).

Table 5
The confusion matrix for the Credit dataset.

Cluster 1 2 3 4 5 6 7 8 9 10

Negative 3 16 26 45 2 62 32 26 1 6
Positive 2 0 10 2 6 5 1 0 0 9

Cluster 11 12 13 14 15 16 17 18 19

Negative 6 79 55 0 15 3 0 4 2

Table 4
The confusion matrix for the DNA dataset.

Cluster No. 1 2 3 4 5 6 7 8

None 191 132 33 91 87 104 63 70
IE 0 0 3 12 63 1 8 1
EI 0 0 122 1 10 1 6 280

Cluster
No.

9 10 11 12 13 14 16 17 18 19 20

None 20 21 161 26 40 80 33 160 53 32 111
IE 107 232 0 65 0 0 5 0 175 96 0
EI 70 4 6 20 86 2 140 0 10 8 0
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clustering error 3.8% whereas their algorithm was not able to cluster
0.9% data points.

Weight distributions of different attributes in three big clusters
are shown in Figs. 3 and 4. The results (Fig. 3) suggest that attribute
1, attribute 4, attribute 5 and attribute 9 are the main contributors
to cluster 3 (Republican cluster). The original Republican class has
many data points which are represented by attribute 1 (y), attri-
bute 4 (n), attribute 5 (n) and attribute 9 (y) values. In the same
way, the Republican class has many data points (cluster No. 7)
which are represented by attribute 3 (n), attribute 4 (y), and attri-
bute 14 (y) values whereas Fig. 4. shows that attribute 3, attribute
4 and attribute 8 are the main contributors for cluster 4 (Demo-
crats). The original Democrats class has many data points, which
are represented by attribute 3 (y), attribute 4 (n), and attribute 8
(y) values. These results show that the proposed algorithm give
good information cluster formation that is consistent with the gi-
ven information (the original class).
Table 3
The confusion matrix for the Mushroom dataset.

Cluster No. 1 2 3 4 5 6

Edible 4 48 12 800 32 768
Poisonous 0 0 0 335 0 0

Cluster No. 15 16 17 18 19 20

Edible 12 70 8 48 36 192
Poisonous 0 0 0 0 0 0

Cluster No. 28 29 30 31 32 33

Edible 0 0 0 0 0 0
Poisonous 432 383 39 91 63 143
4.3. Mushroom dataset

This is a pure categorical dataset, it contains 8124 data points.
These data points are described by 22 attributes and divided into
two groups; edible (4208 points) and poisonous (3916 points). As
it was a large dataset, we took the number of desired clusters = 40.
However, with k = 40 we got only 11 clusters. We got 40 clusters
with k = 200. The results are presented in Table 3. Results suggest
that only one of the clusters is not pure. We got 335 data points
(4.1%) not in the desired clusters. For this dataset Zaki et al. (2007)
got 0.3% data points not in desired clusters. We also studied the attri-
butes weights for the cluster 6 and the cluster 22 (edible); the clus-
7 8 9 10 11 12 13 14

60 24 144 48 16 36 96 4
0 0 0 0 0 0 0 0

21 22 23 24 25 26 27

32 1726 0 0 0 0 0
0 0 36 3 128 4 8

34 35 36 37 38 39 40

0 0 0 0 0 0 0
71 135 15 16 31 191 1800

Positive 1 5 239 4 2 3 2 0 15
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Fig. 5. Attribute weights for the cluster 6 (the left graph) and the cluster 12 (the right graph).
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ter 28 and the cluster 40 (poisonous). The cluster 6 and the cluster
22 belong to the edible group but contributions of attributes no. 12,
13, 14, 15 are quite different in these clusters. Similarly for the
cluster 28 and the cluster 40, the study suggests that attributes
{1, 2, 5, 9, 12–15, 22} contribute differently. This suggests that with
our proposed algorithm, we can get interesting information about
the cluster formation, which may be useful for decision making.

4.4. DNA dataset

This data consists of 3175 data points each represented by 60
categorical attributes. This data has three classes EI (765), IE
(762) and None (1648). Clustering results with k = 20 are presented
in Table 4. There are 540 data points (17.0%) which are not in the
desired clusters. Cluster 9, cluster 10, cluster12, cluster 18 and
cluster 19 represent the IE class. Cluster 3, cluster 8, cluster 13
and cluster 16 represent the EI class whereas the rest of the clus-
ters belong to the None class. We also studied how different attri-
butes contribute to different types of clusters. The study suggests
that for EI and IE clusters, attributes 20 to 40 contribute more,
whereas for None cluster contribution of all attributes are similar.
This is in line with the characteristic of the data. (http://www.nia-
ad.liacc.up.pt/old/statlog/datasets/dna/dna.descri.html)

4.5. Australian credit data

This dataset contains data from credit card organization, where
customers are divided into two classes. It is a mixed dataset with
eight categorical and six numeric features. It contains 690 data
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Fig. 6. Attribute weights for the cluster 13.
points belonging to two classes – Negative (383) and Positive
(307). Table 5 presents the results of cluster recovery using our
algorithm. We got 13.9% data points not in desired clusters. Huang
et al. (2005) achieve 15% clustering error (only 2 out of 2000 runs)
for this dataset with full data space clustering, whereas Ahmad and
Dey (2007b) achieved 12% clustering error. We also studied the
contributions of different attributes to the different clusters. We
studied the attribute weights for the cluster 6 (Negative), the clus-
ter 12 (Negative) and the cluster 13 (Positive). We observe that
attribute contributions for the cluster 6 and the cluster 12 (Nega-
tive clusters) are similar whereas attribute weights for cluster 13
(Positive cluster), are different. The attributes weights for the clus-
ter 6 and the cluster 12 are presented in Fig. 5. The attributes
weights for the cluster 13 are presented in Fig. 6. For the cluster
13 (Positive cluster), attribute 8 and attribute 12 are very impor-
tant. The attribute 8 has two values 0 and 1. The majority of data
points with the attribute 8 value = 0 belong to negative class,
whereas the majority of data points with the attribute 8 value = 1
belong to the negative class. This explains the importance of this
attribute in the cluster formation. The low attribute weight value
of the attribute 5 is due to almost similar distribution of attribute
values in both the clusters (positive and negative).
5. Conclusion

In this paper, we presented a k-means type clustering algorithm
for subspace clustering for mixed numeric and categorical data.
This algorithm is linear with respect to the number of the data
points. We used the method proposed by Jing et al. (2007) to com-
pute the attribute weights in the clusters formation. We presented
results on pure categorical and mixed datasets. The results suggest
that we are getting good cluster recovery. We explained these clus-
ters with the attribute weights. That suggests that we can use this
algorithm for better understanding of cluster formation. In future
we will work to understand the relationship between c (user de-
fined value) and k (number of desired clusters) in a dataset, as
we can achieve better results by optimizing these values.
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