ٍSafety Issues of Computer Failure

SAFETY ISSUES OF COMPUTER FAILURE

Dr. Sami M. Halawani

halawani@kaau.edu.sa

Abstract

It is common to use programmable computers in applications where their failure could be life threatening and could result in extensive damage. When computers are used to replace electromechanical devices that can achieves higher reliability levels, then safety may even be impaired. Even when computers can improves safety, it is not clear that the end result is actually an increase in system safety. Despite potential problems, however, computers are being introduced to control some hazardous systems. The majority of people using these computers believe that these programmable computers never fail and whatever comes out of them has to be taken for granted. It is likely that typical programmers leave around 50 errors per thousand lines of code that they write; Software errors do not have serious sequences because people can repair the damage at some cost in time and aggravation, but some products do not provide much opportunity for people to correct errors. When a computer controls a linear accelerator or an airplane, the results of an error cannot be discarded or ignored. If the patient dies or the airplane crashes, the computation cannot be "done over". Applying typical programming practices to critical systems like these can result in tragedy.

This paper sheds some light on the danger, risks, and gives examples of computer software failure. It is shown that even if people are extremely cautious and lucky on using computer systems, they must still anticipate the occurrences of failure and hence serious catastrophes may rise in critical applications. Factors that may reduce this danger are discussed.

Key Words Software Engineering, Real Time Systems, Human Computer Interaction, Software Testing, Fault tolerance, Fatal Medical and Aviation accident, and reliability of software system

1 Introduction

People put too much confidence on computer systems, even to the extent of rejecting their own external evidence that the system was wrong. Self-assurance and lack of concentration appeared to cause them to react to failures and errors much more slowly than they should. Serious cases have involved blind faith (trust in a faulty system, ignoring the human element), obviousness (Chernobyl), unwillingness to believe a diagnostic indicating a seriously abnormal event, annoyance (e.g. diagnostic alarms that mistakenly go off too frequently), trust in the infallibility of fault tolerance and recovery programs, lack of emergency planning, and confusion under emergency responses.

2 Examples of Computer Failure

Incidents of failures of computers are not all the same. We begin by given some of the incidents which caused inconvenience and then move to more serious examples involving Financial, Aviation, and Medical systems which cause loss of money and or human lives.

- January 1998 news reports told of software problems at a major U.S. telecommunications company that resulted in no charges for long distance calls for a month for 400,000 customers. The problem went undetected until customers called up with questions about their bills.

- In November of 1996, newspapers reported that software bugs caused the 411 telephone information system of one of the U.S. RBOC's to fail for most of a day. Most of the 2000 operators had to search through phone books instead of using their 13,000,000-listing database. The bugs were introduced by new software modifications and the problem software had been installed on both the production and backup systems. A spokesman for the software vendor reportedly stated that 'It had nothing to do with the integrity of the software. It was human error.

-Software bugs in a Soviet early-warning monitoring system nearly brought on nuclear war in 1983, according to news reports in early 1999. The software was supposed to filter out false missile detections caused by Soviet satellites picking up sunlight reflections off cloud-tops, but failed to do so. Disaster was averted when a Soviet commander, based on a what he said was a '...funny feeling in my gut', decided the apparent missile attack was a false alarm. The filtering software code was rewritten. [1]

- About 100 hospitals around the USA, including Washington Hospital center, were forced to switch from computers to pen and paper for major bookkeeping functions because a software program could not figure out what day it was. The incident, apparently caused by a mistake in programming, demonstrates how institution are accepting the risk that major deceptions might occur in the work place as more and more functions are handed to computers. The incident affected hospitals that use software and services provided by a company that stores and processes information for hospitals on its own mainframe computers and provides software that can be used on IBM equipment. The problem was traced some hours later to a program that allows hospitals to automate the ordering and reporting of laboratory tests. Due to a fault in the aging software, the machines were unable to accept input. [1]

- A women was sent a bill for more than $ 1 billion (including penalties) by the IRS. The IRS later admitted an error in the interest computation.

- A man's auto insurance rate tripled when he turned 101; this was the computer program's first driver over 100, and he was converted into a teenager [1].

- A man was billed $ 6.3 million instead of $ 63 for electricity, after an input error attributed to unfamiliarity with a new computer system. [1]

- A Saudi Women received her electrical bill for 1/4 million Saudi Riyals($66500) when she only owed 17.35 Saudi Riyal. The Electric Company apologizes and believed that was caused due to computer software error [2]

- A crew member of the guided-missile cruiser USS Yorktown mistakenly entered a zero for a data value, which resulted in a division by zero. The error cascaded and eventually shut down the ship's propulsion system. The ship was dead in the water for several hours because a program didn't check for valid input. [3]

-In the early stages of the recent Middle-East war, the Patriot system was considered highly successful. In subsequent analyses, the estimates of its effectiveness were seriously down-graded, from about 95% to 13% due to software round error problem [4].

2.1 Examples of Financial system Failure

There are so many incidents related to computer software in the financial industry. Here are some examples:

-Due to a bank error in the exchange rate, an Australian man was able to purchase Srilankan rupees for (Australian $ 104,500 and then sell them to another bank the next day for $ 440,258. (The first bank's computer had displayed the Central Pacific France rate in the rupee position.) Because of the circumstances surrounding the bank's error, a judge ruled that the man had acted without intended fraud, and could keep his windfall of $ 335,758. [5]

- A Norwegian bank cash point computer system (ATM) dispersed 10 times the amount requested. Many people joined the queues as the work spread.

A software flaw caused a bank in the United Kingdom to duplicate every transfer payment request, for a period of half an hour, totaling over 2 billion British Pounds [1]

-During a test of its computers, A Bank accidentally reran 1,000 transactions from the previous working day, transferring $2 billion to 19 different financial institutions [1]

- AT&T long distance service fails for nine hours due to wrong BREAK statement in C-Code in 1990 [6]

- In March of 2002 it was reported that software bugs in Britain's national tax system resulted in more than 100,000 erroneous tax overcharges. The problem was partly attributed to the difficulty of testing the integration of multiple systems. [1]

- A small town in Illinois in the U.S. received an unusually large monthly electric bill of $7 million in March of 1999. This was about 700 times larger than its normal bill. It turned out to be due to bugs in new software that had been purchased by the local power company to deal with Y2K software issues [1].

- In April of 1998 a major U.S. data communications network failed for 24 hours, crippling a large part of some U.S. credit card transaction authorization systems as well as other large U.S. bank, retail, and government data systems. The cause was eventually traced to a software bug. [1]

- In April of 2003 it was announced that the largest student loan company in the U.S. made a software error in calculating the monthly payments on 800,000 loans. Although borrowers were to be notified of an increase in their required payments, the company will still reportedly lose $8 million in interest. The error was uncovered when borrowers began reporting inconsistencies in their bills. [1]

- Software bugs caused the bank accounts of 823 customers of a major U.S. bank to be credited with $924,844,208.32 each in May of 1996, according to newspaper reports. The American Bankers Association claimed it was the largest such error in banking history. A bank spokesman said the programming errors were corrected and all funds were recovered [1].

- Pentium chip fails a math test the time it hits the market in early 1994. The concept of bugs entered the mainstream when Professor Thomas Nicely at Lynchburg College in Virginia discovered that the Pentium chip gave incorrect answers to certain complex equations. In fact, the bug occurred rarely and affected only a tiny percentage of Intel's

customers. The bug was due to incomplete entries in a look-up-table [7]. Intel eventually offered incomplete entries in a look-up-table, to replace the affected chips, which Dracott says cost the company $450 million. To prove that it had learned from its mistake, Intel then started publishing a list of known "errata," or bugs, for all of its chips [8]

 2.2 Examples of Aviation system Failures

There are so many incidents related to computer software in the aviation industry. The ideal model that we will investigate closely is the European Airbus 320 which uses the computer software to control all activities of the aircraft.

-The 125 million dollar Mars Climate Orbiter is assumed lost by officials at NASA. The failure responsible for loss of the orbiter is attributed to a failure of NASA's system engineer process. The process did not specify the system of measurement to be used on the project. As a result, one of the development teams used Imperial measurement while the other used the metric system of measurement. When parameters from one module were passed to another during orbit navigation correct, no conversion was performed, resulting in the loss of the craft [9].

- In April of 1999 a software bug caused the failure of a $1.2 billion U.S. military satellite launch, the costliest unmanned accident in the history of Cape Canaveral launches [1]

 2.2.1 The European Airbus A320

The Airbus A320 was the first airliner to have every function from flight controls to toilet operation, directed by computer. The control system employed by the A 320 is known as "fly by wire". FBW replaces the conventional stick and rudder controls with series of computers and miles of electronic cables. Sensing devices which gauge the aircraft's flight characteristics pass the information to the six color monitors. This aircraft uses "dissimilar redundancy". That is, computers that designed to back each other up are of different brands, have different microprocessor types and are supplied by different vendors, all to minimize the likelihood of identical hardware parts failing at the same time. And different programmers were employed to write each of the parallel sets of software. Moreover, each computer is divided into two physically separate units with "segregated" power supplies.

In the event that two computers should disagree, one automatically shuts itself down and its tasks are carried out by the other. The pilot's display monitors would tell them what had happened. Many pilots flying the A 320 have been enthusiastic in praising its handling and flying qualities. But some have complained about software problems and control irregularities. [10]

2.2.2 Some Airbus accidents

On June 26, 1988, two days after the third A320 went service; it crashed while performing a low-level pass at a French air show. A woman and two children on board were killed. An investigation blamed the accident on pilot error, but the pilot faulted a number of factors including the aircraft's computers for providing incorrect altitude information. Since then, various unsettling reports have appeared in the European press, regarding; engines, unexpectedly throttling up on final approach; inaccurate altimeter readings; sudden power loss prior to landing; steering problems while taxiing. It was noted that a software bug in its altimeter which measures the aircraft's height. [10]

-on Jan 30 2000 a Kenya Airways Flight 430 departed from Nairobi for a flight to Lagos and Abidjan. Due to the "Harmattan", a dusty seasonal wind from the deserts of north Africa, the flight continued directly to Abidjan. At 21.08h the aircraft, now designated Flight 431 took off again for Lagos. Preliminary investigation reports say that 1,7 seconds after the gear up command was given, the aural stall warning sounded. The warning sounded for 21.5 seconds while the aircraft transitioned from climb to descent. The alarm sounded until it was shut off manually by the crew, and was silent when the plane was between 100 feet and 50 feet, which was at 3.3 seconds before the first sound of impact [11]

2.2.3 Other aviation accidents

- In a famous 1962 incident, the Mariner I Venus probe had to be destroyed when it went off-course because of a single-character transcription error in the equations used as specifications for its control program. The error was attributed to using period instead of comma in FORTRAN DO-Loop [12]

-In 1983 a United Airlines Boeing 767 went into a four-minute powerless glide after the pilot was compelled to shut down both engines because of overheating. The National Transportation Safety Board discovered that the plane's computerized engine-management system had ordered the engines to run at a relatively slow speed to optimize fuel efficiency. In the flight's particular atmospheric circumstances, however, this had allowed ice to build up on some engine surfaces, reducing the flow of air and causing the engines to work harder and overheat. [13]

- National Transportation Safety Board investigators say that a software error may have been a contributing factor in the crash of the Korean Air 747, Flight 801, in Guam. 225 of the 254 people on board were killed. The bug didn't cause the crash; however, if it were not for the bug, the crash might have been averted. The airport at Guam has a system known as Radar Minimum Safe Altitude Warning. It notifies controllers if a plane is too low; they in turn can notify the pilot. It normally covers a circular area with a 63-mile radius. Because of the bug, it was only covering a one-mile wide strip around the circumference of the circular area. The bug in the upgraded software apparently existed in airports throughout the world, and was not detected until analysis after the crash. Seeking to discover the exact point in time at which the altitude-warning system had failed, investigators discovered that the system had not issued any expected warnings and had failed completely [14]

- On June 4 1996 the first flight of the European Space Agency's new Ariane 5 rocket failed shortly after launching, resulting in an estimated uninsured loss of a half billion dollars. It was reportedly due to the lack of exception handling of a floating-point error in a conversion from a 64-bit integer to a 16-bit signed integer. [1]

2.3 Examples of Medical system failures

Use of computerized devices will continue to enable new clinical procedures and functions to be performed, ones that could not have been done by a team of medical experts without the aid of automation. In addition, the reliability and relative safety of procedures performed by computerized devices should generally be higher than manually-performed, labor-intensive, tasks. Under manual operation, users are prone to occasional inattention, fatigue or boredom, which lead to human error. This can compromise patient safety. However, safety and clinical effectiveness can also be compromised in automated systems if attention to "computer safety" and/or Quality Assurance (QA) procedures are not used in the design, manufacture, testing and Installation of these automated devices. [15]

A vast majority of the electronic devices in these categories use microprocessors or larger computers. The primary computer-related problems associated with mal functions of these devices have been identified as: Inadequate software design and quality assurance practices. For examples:

- A system designed of monitoring several patients at once was recalled because it kept mixing up the patients [16]

- A programmable heart pacemaker suddenly "froze" while it was being adjusted by a doctor. A device of dispensing insulin delivered the drug at an inappropriate rate resulting in a patient receiving a drug overdose [16].

- An ultrasound scanner sometimes underestimated fetal weight [16]

-A blood analyzer displayed incorrect values because addition, rather than subtraction had been programmed into a calibration formula. [16]

The greatest advantage of using software in the medical systems is its flexibility and also, from a regulatory point of view, one of its biggest problems. Posting documented serious injuries of deaths that can be unequivocally attributed to deficiencies in the design or implementation of computer-controlled systems are very rare. A tragic exception was a series of accidents which occurred between 1985 and 1987 involving a computer-controlled radiation therapy machine; The Therac-25 radiation machine shown in figure1 [17]

[image: image1.png]

Figure 1: The Therac-25 Machine

 2.3.1 Fatal medical system Accidents

- In Tyler, Texas in March 1986, a patient receiving radiation therapy from a medical liner accelerator- a Therac-25 produced by Atomic Energy of Canada Limited (AECL) - felt a burning sensation during the normally painless treatment. Clinic staff suspected an electrical shock, but since specialist were unable to locate any hazard, the machine was kept in use. The same malfunction reoccurred with a different patient less than a month later. Both patients died that summer. It was estimated that patients got 17,000 to 25,000 rads in a single treatment. For comparison, typical therapeutic does are in the range 4000 - 6000 rads, delivered in 20 to 30 separate daily treatments administered over a month or more. What is really alarming here is that the therapy machine are set up to deliver dose rates on the order of 100 rads per minute. Unfortunately, most therapists asserted that there was no way, physically, that a machine could deliver tens of thousands of rads in a few seconds". Investigations revealed that the accidents were caused by the programs controlling the Therac-25[18]

The original software for the Therac-25 was developed by a single person, using PDP 11 assembly language, over a period of several years. The software "evolved" from the Therac-6 software, which was started in 1972. According to a letter from AECL to the FDA, the "program structure and certain subroutines were carried over to the Therac 25 around 1976[19]. The tasks and subroutines in the code blamed for the Tyler accidents are shown in Figure 2 [17]

[image: image2.png]T

s
oo
{Dai Buiy | Fes
e
5 4w
SecUp Done
St
Posent Do
T
Poue T e
E=h

Dot Tive, D o

Figure 2.Tasks and subroutines in the code blamed for the Tyler accidents

If the machines operator entered an unusual but nonetheless possible sequence of commands, the computer controls would place the machine's internal into an erroneous and very hazardous state, subjecting the patient to a massive overdose. The software people had not considered it necessary to guard against this failure mode. As news of the accidents spread and other reports surfaced: a patient in Ontario, Canada and another in Georgia had been seriously injured by Therac-25 systems in 1985. Another serious overdose occurred in Washington State early in 1987. All three patients had to discontinue treatment and two subsequently died. [20]

3 The Role of Regulator Agencies

Government agencies such as FDA in the United States, plays a guardian of public health and safety, it regulates the software component of medical devices. The agency's effort has already raised questions about what kinds of products, software and information system should be regulated.

The FDA publishes a draft policy for the regulation of computer products marked for medical use. In that policy the concept of "component human intervention" sets the dividing line to regulation if a qualified doctor or nurse cannot effectively intervene to override the machine's actions. Devices such as software driven cancer therapy machines, programmable heart pacemakers, and automatic drug dispensers clearly fall into that category.

3.1Regulator Agencies Difficulty

Government officials recognize the difficulties involved in regulating medical software. The agency fully appreciates the revolution occurring in medicine with the introduction of the computer and microprocessors; they can only give general guidelines.

3.1.1 Problem facing Government Agencies

How assurance can be provided is still an unsolved problem. Techniques for evaluating software safety are relatively new. Who does the checking, how much evidence is enough, and how can the Agency perform an independent check are also unresolved issues. Furthermore, software developers are wary of submitting complete listings of the instructions in their computer programs because of competition issues. The trouble with the Regulator agencies approach is that it doesn't consider under what conditions software is used. Instead, it focuses on the idea that not all computer errors are equally serious. Using a kind of hazard analysis to focus on situations that could lead to life-threatening computer failures would be one way to eliminate the most serious potential faults and to shorten testing times.

4Attributing Causes to the Software problem

It's not surprising, then, that computer programs contain errors and computer systems unexpectedly fail. Here are some reasons that illustrate why there are problems with the software industry

4.1 People Anticipation and Expectation

People are reluctant to believe that the computer may be a fault! There seems to be a feeling among non-software professionals that software will not or cannot fail; this leads to satisfaction and over reliance on computerized functions.

Human error is always the first ascribed cause whenever a human is involved in the system where an accident occurred. If a human cannot be blamed, then the hardware is. In the first incidents involving the Therac-25, the accident was blamed on a faulty micro-switch. It was believed that the burn suffered by the patient was electrical. Nobody believed that the patient could have suffered an overdose or that the computer could have been involved. The Therac-25 victim in Georgia had great trouble convincing anyone that the Therac was responsible for her severe burns. [18]

4.2 Complexity

At the current state of the art only very simple programs can be proven correct. Although it is terribly misleading to assume that either the complexity or power of a computer program is a linear function of the length, some rough numbers are illustrative. The simplest possible arithmetic programs are measured in number of lines: the current state of the verification art extends only to programs of up to several hundred or thousand. It is estimated that the systems proposed in the Strategic Defense Initiative (Stars Wars), in contrast, will require at least 10,000,000 lines of code.

The sophisticated computer system such as FBW may be too far ahead of its time because of our relatively limited ability to test the reliability of software. If N - Version programming is used (such as FBW), there may be common sources of error, such as a faulty specification, which causes the same mistakes in every version of the program. Identical errors may be made by independent teams. Testing only exercises a small proportion of the possible situations that the program may have to handle. There are very serious risks in reliance or software in safety-critical applications. A seemingly innocuous addition to the software could have disastrous effect not discovered in testing. The task facing testers is prodigious for even small amounts of software; the number of possible paths far exceeds the number which could realistically be tested.

We don't have the technology yet to tell if the programs have been adequately tested. We can't predict what errors are left after testing, what their frequency is or what their impact will be. If, after testing over a long period, the program has not crashed, then it is assumed to be okay. That presupposes that they will have generated the entire sort of data that will occur in real life and it is not clear that this will be true. [21]

4.3 Insufficient Quality Assurance for Software

Inspections have revealed many incidents of poor QA problems involving the computerized portion of a device .Due to inadequate documentation and the high turnover rate among programmers, a new programmer must debug unfamiliar software in a very inefficient manner. [18].The documentation varies widely in quality and completeness. Furthermore, the software company often does not perform sufficient testing

of the "new" software. Often, developers of commercial software work under so much pressure to deliver a product. They sometimes appear to rely on their customers to do a significant part of the software testing for them. Any user of such software must watch closely for problems and anticipate the possibility of sudden, inexplicable failures. When designing a system that humans, and computers will interact to control, one of the basic problems is the allocation of tasks between the human and computer. The goal is to optimize with respect to such criteria as speed of response, deviations of important variables, availability, and safety. It may not be possible to optimize all the variables because of conflicts, and therefore trade-offs must be considered. [21]

4.4 The problem of who to blame?

When systems fail, victims or their survivors may sue vendors and service provider's compensation. An important legal issue turns on whether software is considered to be a service (in which case providers will be found liable if it can be shown they were negligent), or for a production in which case strict liability holds, it is only necessary to show that the plaintiff was injured. It is usually to the plaintiff's advantage if software is regarded as a product. [22]

5 Minimizing the Risks of Failure

To following factors may reduce the risk and danger of computer software failure

5.1 Improving the Computer Science Field

In the US and around the world, Computer Science academic programs award high number of Bachelor of Science (BS), Master of Science (MS) degrees annually. Some of these students enter Ph.D. Many of these graduates take computing jobs for which they are inadequately educated, such as helping to develop high performance computing applications to improve the performance of human organizations. The programming profession includes a great range of education and abilities, and many curricula should provide instruction in topics relevant to building safe systems. Studies of employed programmers have found that the best can be more than 25 times as capable as the worst and some teams out produce others by factors of four or five [22]

 5.2 Software Engineering

Producing quality software is largely a design and management problem, not a coding problem. Individual programmers usually comprehend their creations at the level of modules that are most a few hundred lines long. Most programmers are trained to concentrates on this level. Building large programs that are tens of thousands of lines long requires a different set of skills [21].

Emphasizing communication and organization in order to extract useful specifications, divide the project into modules that are reasonable work. The central idea of software engineering is that programming projects have to be performed in stages, with an identifiable end product at each state [21].

 The final product is the program itself. There are several or many, intermediate stages are documents about the program. Typically, these include a specification describing what the product is supposed to do.

A design guide describing how the program is organized, a plan describing a series of tests that are supposed to show that the program works as promised in the specification and a test report that presents the test results and explains how any problems were resolved [21].

This enforces an orderly development process, makes progress visible to management, and enables products to be reviewed by experts other than their creators. Programmers ought to work much differently on engineered software projects. Their effort has to be devoted to planning and design, and much of the rest goes for testing and quality assurance. Only 15% to 20% must be spent on coding statements in a programming language [21]

Without this guidance, skilled coders flounder. The all-too- frequent result is programs that seem to work, but then fail unexpectedly. It's extremely hard to build a large computer program that works correctly under all required conditions, but it's easy to build one that works 90 percent of the time. The following measures if followed will reduce the number of bugs in the software; however, it will not guarantee that the software is 100% correct:

A) Documentation should not be an after thought.

Software quality assurance practices and standard should be established.

B) Designs should be kept simple.

C) Ways to get information about errors, i.e., software audit trails, should be designed into the software from the beginning.

D) The software should be subjected to extensive testing and formal analysis at the module and software level; system testing alone is not adequate[9]

 5.3 Software Engineering standard

The whole purpose of staged development is to ensure that the necessary planning and design is performed. There exist many so-called software standards that are actually, documentation standard that describe the format of the documents in considerable detail. The fact that the standards define only what the reports must look like but not what programmers must do explain the disappointment that most programmers feel when they first read them. Conscientious programming teams usually develop their own documentation style, which is well-matched to their product and their favored design methods. [22]

5.4 Certification and Regulation

We regulate product that have safety implications: building, bridges, airplanes, drugs. The government established standards that these products must meet and conduct inspections to make sure products comply. We also must regulate people that provide safety critical services: they must satisfy educational requirements and examinations. Software is still largely unregulated. Until recently, aviation and nuclear power were the only applications in which software purchased or operated by private enterprise was subject to approval by the government.

5.5 Testing

Most programmers are not able to demonstrate that their programs will compute the intended results, except by running tests. It is literally a trial-and error process. It is not terribly confidence-inspiring because the number of possible situations that a program must deal with is usually much too large to test, and a case that was left out of the test set may cause the program to fail. As result, errors are left in products to be discovered when they reach the market. They are corrected over time as the system is used. Testing should be performed with balance between safety and cost [23]

5.6 Fault-Tolerance

If the application produced is used in a critical system where human lives are at risk, and if it is economically affordable to use Fault Tolerant technique such as N-Version programming (where different programs written independently from the same specification, and then executing them in parallel, with conflicts resolved by majority voting) should be done after intensive studying. This may reduce the problem. Although, it has been shown, that even when the different versions appear to be independent, they may exhibit common fault modes or have logically related flaws.

5.7 Reliability

Formal methods are mathematically base techniques for increasing product reliability that overcome some of the limitations of trial-and-error testing. Computer scientists have been pursuing formal methods for more than 30 years, but they are almost never used in practice. Although, the techniques are so difficult and cumbersome, it should be applied to programs. [22]

5.8 Software Safety

Safety-critical products demand a different, more rigorous approach than most other computer applications. They require several disciplines that should be familiar to many programmers and programming managers: safety engineering teaches how to design systems that remains safe even when hardware or software fails. [22]

The most important lesson of safety engineering is that safety is an important system requirement in its own right and must be designed into a product, not added on as an after thought. Safety requirements often inflate with other system requirements and may suggest a quite different design than would be detained if cost and performance were the only considerations. Resolving such conflicts in a consistent manner demands that safety requirements be explicitly separated out and that responsibility for meeting them be assigned to someone with authority. [22].

A safe system protects from hazards whether its intended functions performed correctly or not. In fact, safety is most concerned with what happens when the system does not work as expected. Safety engineers assume that systems will fail and then they work through the consequences.

5.9 Human Interaction

Facing all the risks of computers does not mean that such systems should not be built and used, only that we need to understand when they can be useful and when can be dangerous and to design them very carefully according to principles of cognitive psychology. It may be easier to change the way the systems are designed than to try to change human nature. The important choice may not be between using such systems or not using them but between building them with or without careful consideration of the humans who will be interacting with them. If we do not yet know enough about the way that human interact with machines, then perhaps this is as important a research topic as studying the technological aspects of design [24]

6 Conclusions

It is true that computer software is not subject to random wear-out failures like hardware; however software design errors are much harder to find and eliminate and may cause disasters. Furthermore, most computer programs don't go through careful programming such as the NASA shuttle programs. The process is both costly and time-consuming, and many programmers lack the expertise to use the sophisticated methods necessary for ensuring software reliability. It was also shown that there are inherent risks in relying on computer systems operating under critical requirements.

References

[1] Software Bugs: http://www5.in.tum.de/~huckle/bugse.html
[2] Saudi Press, Alwatan Daily, Number 1051, Saturday August 16, 2003

[3]Scientific American, November 1998
[4] The Patriot Missile Failure: http://www.ima.umn.edu/~arnold/disasters/patriot.html
[5] Peter G. Neumann ,"Accidental financial losses", Communication of the ACM page 194 Sep. 1992.

[6] AT&T Telephone: http://www-aix.gsi.de/~giese/swr/att2.html
[7] Pentium Processors: http://support.intel.com/support/processors/pentium/fdiv/wp
[8] 10 Greatest Computer Bugs of all Time: http://www.mumbai-central.com/nukkad/ oct1998/ msg00069.html

[9] Mars Climate Orbiter: http://mars.jpl.nasa.gov/ msp98/orbiter/ *

[10] Major Computer Incidents: http://www.rvs.uni-bielefeld.de/publications/Incidents/#MAJORCONT *

[11] Aviation Safety: http://aviation-safety.net/database/ 2000/000130-0.htm *

[12] Software Horror Stories: http://www.cs.tau.ac.il/~nachumd/verify/horror.html *

[13] Communication of the ACM page 154 Jan 1993.

[14]http://courses.cs.vt.edu/~cs3604/lib/Impact/Gua/ Software.html *

[15] IEEE / 7th annual conference of Engineering in Medical & Biology Society.

[16] Science News Vol. 133, " A digital Matter of Live & Death" by Ivars Perteson

[17] Therac -25 Pictures: http://courses.cs.vt.edu/~cs3604/lib/Therac_25 *

[18] Medical devices, The Therac-25, Nancy Leveson, an investigation paper: http://sunnyday.mit.edu/ therac-25.html

[19] The Original Therac-25 Software: http://courses.cs.vt.edu/~cs3604/lib/Therac_25/Therac_1.html *

[20] Jonathan Jacky,"Inside RISKS: risks in medical electronics", Communication of the ACM page 138 Dec. 1990.??

[21] Quality Assurance &Testing: http://www.softwareqatest.com/ *

[22] Safety critical computing: Hazards Practices, standard & regulation by Jonathan, Jacky. The sciences Sep. / Oct. 1989.??

[23] The Economic Impact of Inadequate Infrastructure for Software Testing, Report for the National Institute of Standards and Technology, May 2002.
[24] Designing the User Interface: Strategies for Effective Human-Computer Interaction, Ben Shneiderman , 2004 ,ISBN 0-321-19786-0

* Last visited 30th March 2005

‏03‏/04‏/2005

 TIME \@ "hh:mm:ss am/pm" ‏09:41:19 ص1

