
Asian Transactions on Computers (ATC ISSN: 2221-4275) Volume 01 Issue 05

1 ATC-70110058©Asian-Transactions Nov 2011

Representing Programming Object Metadata Using

the IEEE LOM Methodology

Daniyal M. Alghazzawi, IEEE

Information Systems Department, Faculty of Computing and Information Technology,

King Abdulaziz University, Saudi Arabia

dghazzawi@kau.edu.sa

Abstract-Software engineering is concerned with

developing reusable high-quality programming objects

such as architectures, source code, data, designs,

documentation, templates, human interfaces, plans,

requirements, and test cases. In order to deploy such as

these objects, we need to maintain a metadata for them. In

this paper, we used the term Programming Object

Metadata for such a metadata. Currently, there is no

standard for this type of metadata. Therefore, this paper

focuses on developing a metadata for the programming

objects by using IEEE Learning Object Metadata

1484.12.1-2002 methodology. The proposed metadata was

validated by providing an example of a Programming

Object Metadata (POM) in XML format.

Index Terms—Programming Object, Metadata,

Learning Object, Reuse, Quality.

I. INTRODUCTION

eveloping high quality software at low cost is a major

challenge for the software industry [1]. One way to

accomplish this task is to have a reusable Programming

Object plan [2]. A programming object is defined in this

paper as any entity–digital or non-digital–that may benefit

software product, such as architectures, source code, data,

designs, documentation, templates, human interfaces, plans,

requirements, and test cases. Sharing high-quality

programming objects between developers in an institution or

across institutions will enhance the quality of the software in

a short period.

The major barrier in sharing a programming object

between parties is the protocol (the language of speech) used

to describe the programming object. We can formalize this

protocol by developing a metadata called Programming

Object Metadata (POM). A metadata instance for a

programming object is defined in this paper as a description

of relevant characteristics of the programming object to

which it applies. Although there are numerous standards in

software engineering that are developed by Institute of

Electrical and Electronics Engineers (IEEE), none of them

addresses the Programming Object Metadata [3,4]. On the

other hand, IEEE developed a similar standard in the

education field called IEEE Learning Object Metadata.

Therefore, this paper proposes a metadata for Programming

Objects by using IEEE LOM (1484.12.1) standard

methodology.

IEEE LOM (1484.12.1) standard is described in section

2. Section 3 presents the proposed changes to the IEEE

LOM standard in order to represent a programming object.

At the end, section 4 provides a conclusion about this work.

II. BACKGROUND ON IEEE LOM STANDARD

The IEEE Learning Object Metadata (IEEE LOM) draft

standard was developed by the IEEE Learning Technology

Standard Committee (IEEE LTSC) in 2002 to represent

learning objects. A learning object is defined by the standard

as "any entity–digital or non-digital–that may be used for

learning, education or training" [5], such as, multimedia

resource, case studies, and education tools [6]. A Learning

Object Metadata (LOM) describes the characteristics of a

learning object, so it can be shared between individuals or

institutions using a Learning Management System (LMS).

Also, this standard addresses sharing learning objects

between nations, so it permits linguistics diversity of both

learning objects and the metadata that describe them.

Sharing learning objects between institutions may result

in reducing the time-cost of development of a learning object

and enhancing the quality of education. The cost of

developing a new learning object from scratch will be

reduced because of the capability to use a similar object that

was developed by others. Also, the quality of the education

in an institution will be enhanced by using high-quality

learning objects. In general, sharing high-quality objects will

reduce the time-cost of developing similar objects and

enhance the quality of the field.

IEEE LOM standard categorizes the characteristics of a

learning object in 9 categories: general, life cycle, meta-

metadata, technical, educational, rights, relation,

annotation, and classification categories. Each category

contains data elements that describe the learning object or its

metadata in detail. Appendix A shows the 9 categories with

their data elements. Each of the data elements that do not

include any sub-category (leaf node) is defined by name,

explanation, size, ordering, value space, and datatype. All of

the data types –LangString, DateTime,

Duration, and Vocabulary– used in describing data

elements are defined in the standard.

D

http://www.ieee.org/
http://www.ieee.org/

Asian Transactions on Computers (ATC ISSN: 2221-4275) Volume 01 Issue 05

2 ATC-70110058©Asian-Transactions Nov 2011

III. USING IEEE LOM STANDARD TO REPRESENT

PROGRAMMING OBJECTS

There are 46 main data elements in the IEEE Learning

Object Metadata standard across all the categories used to

describe a learning object and its metadata; all of them are

used to describe a programming object, while some of which

are modified to suit the programming objects. The

descriptions of 7 data elements (1.1 Identifier, 1.7

Structure, 2.2 Status, 4.2 Size, 4.3

Location, 9.1 Purpose, and 9.2 Taxon Path) are

changed slightly to be used in characterizing Programming

Objects. On the other hand, 2 of the data elements (1.6

Coverage and 5.7 Typical Age Range) are

eliminated because there are not related to any programming

object. In addition to the existing data elements, 4 new data

elements (5.x Time Unit, 5.x Requirement, 5.x

Testing Techniques, and 6.x Reuse Type) are

added to further specify a programming object. Besides the

necessary changes in the data elements, the descriptors for 2

categories (4 Technical and 5 Education) are

changed slightly. Fig. 1 presents a diagram for the categories

and the data elements are proposed to be modified to suit

Programming Object Metadata.

FIG. 1: Proposed Modification to IEEE LOM to suit Programming Object Metadata

The following four subsections describe the proposed

modifications to the IEEE LOM Standard to conform to the

Programming Object Metadata. Appendix B provides an

example of the proposed POM in XML format.

A. Modifying Categories

This paper proposed modifying the descriptors for two

categories in IEEE LOM Standard to conform to the metadata

of Programming Objects. These categories are:

 4 Technical

 5 Education

A slight change is proposed in the descriptor for the

category <5 Education> to suit the Programming Objects.

This category may be used in any Programming Object that

seeks an education purpose, which implies that most of the

data elements in this category can be used to describe

Programming Objects. In this paper, it is proposed that the

data elements that focus on the quality be merged with the

category <5 Education>; thus, the time and the space cost

data elements would be in this category. Later in section 3.4, it

is proposed that two new data elements related to the quality

would be added to this category. The name of this category

may need to be changed to a different name to meet the new

description, such as <5 Complexity> or <5 Quality>.

The other proposed change is in the descriptor for the

category <4 Technical>. In LOM, this category describes

the technical requirements of a learning object and its source.

However, we propose to separate the technical requirements of

the object from the technical requirements of the object

source. So, this category will focus only on the source of the

programming object, while the data elements intended for the

programming object will be moved to the previous category

<5 Education>. The name of this category may also need

to be changed to a different name to meet the new description,

such as <4 Source> or <4 Technical Source>.

In the next three sections, this paper proposed either

modifying, adding, or eliminating some data elements, some

of which are caused by the changes in the descriptors of the

two categories <5 Education> and <4 Technical>.

B. Modifying Data Elements

This paper proposed modifying seven data elements in

IEEE LOM Standard to conform to the metadata of

Programming Objects, which are:

 1.1 Identifier

 1.7 Structure

 2.2 Status

 4.2 Size

 4.3 Location

 9.1 Purpose

 9.2 Taxon Path

Proposed Modification to IEEE LOM

Categories Data Elements

Eliminating Modifying Adding

5.x Time Unit

5.x Requirement

5.x Testing

Techniques

1.1 Identifier

1.7 Structure

2.2 Status

1.6 Coverage

5.7 Typical Age

Range

4 Technical

5 Education

4.2 Size

4.3 Location

9.1 Purpose

9.2 Taxon Path

6.x Reuse Type

Modifying

Asian Transactions on Computers (ATC ISSN: 2221-4275) Volume 01 Issue 05

3 ATC-70110058©Asian-Transactions Nov 2011

The first and second proposed changes in the data elements

of the LOM standard are to distinguish clearly the difference

between the two data elements: <1.1 Identifier> and

<4.3 Location>. In POM, the first data element <1.1

Identifier> refers to the programming object itself, since

the source may have more than one programming object while

the second one <4.3 Location> refers to the source itself.

For example in Fig. 2, if we have a web page that describes

more than one programming object, and each of them has a

link that refers to it, the data element <4.3 Location> will

refer to the web site, and <1.1 Identifier> will refer to

one of the programming-object links.

FIG. 2: An example of the two data elements <1.1 Identifier> &

<4.3 Location> in POM

The third proposed change in the data elements of the

LOM standard is in <1.7 Structure> by eliminating one

value from its value space defined in LOM standard. The

value space for this data element has 5 values: atomic,

collection, networked, hierarchical, and linear. All of these

values except the last one (linear) can be used to describe a

Programming Object. Table. I shows an example of a

Programming Object for each of these values.

TABLE I

AN EXAMPLE OF THE DATA ELEMENTS <1.7 STRUCTURE> IN POM

<1.7 Structure> Example Programming Objects

Atomic Define a variable Struct StudentInfo

{

 long ID;

 char Name[100];

}

Collection A function. Each

function may have
more than one

object without

relationship

between them.

Function Init()

{

 StudentInfo S1;

 StudentInfo S2;

}

Networked A Class. It has more

than one object

inside with
relationship

between them.

Class NumCalculation

{

 Private:

 int X;

 int Y;

 void

PrintSum(int,int);

 void

PrintMul(int,int);

}

Hierarchical Class inheritance Class

New::NumCalculation

{

 :

}

The fourth proposed change in the data elements of the

LOM standard is in <2.2 Status> by using different value

spaces. This data element <2.2 Status> can provide

considerable support to programming objects [7]. The old

value space consists of the following four values: draft,

final, revised, and unavailable. On the other hand,

the new value space can be one of the value spaces that are

provided by the IEEE software life cycle standards to specify

the phase of a programming object. An example of IEEE

software life cycle standard is IEEE Std. 1012 for the waterfall

model [3] shown in Fig. 3 (a). The IEEE Std. 1012 has the

following life cycle value space: concept phase,

requirements analysis phase, design phase,

implementation phase, testing phase, and

installation and checkout phase. Another

example of IEEE software life cycle standard is IEEE Std.

1490 for the spiral model [3] shown in Fig. 4 (b). Some of the

life cycle values in IEEE Std. 1490: Final Design,

Physical Design, Second Build, Test, and

System Requirement. Fig. 5 illustrates the use of this

data element in Programming Objects with two different value

spaces.

(a)

(b)

 www.cpp.com

Programming
Object (1)

www.1.com

Programming
Object (3)

www.3.com

Programming
Object (2)

www.2.com

Programming Object 1
<1.1 Identifier>: www.1.com

<4.3 Location>: www.cpp.com

Programming Object 2
<1.1 Identifier>: www.2.com

<4.3 Location>: www.cpp.com

Programming Object 3
<1.1 Identifier>: www.3.com

<4.3 Location>: www.cpp.com

http://www.1.com/
http://www.cpp.com/
http://www.2.com/
http://www.cpp.com/
http://www.3.com/
http://www.cpp.com/

Asian Transactions on Computers (ATC ISSN: 2221-4275) Volume 01 Issue 05

4 ATC-70110058©Asian-Transactions Nov 2011

FIG. 3: Two life cycle models [3]: (a) The Water Fall Model, and (b) The

Spiral Model.

(a)

(b)

FIG. 4: Two examples of the data element <2.2 Status> in POM.

Due to the proposed change of the descriptor for category

<4 Technical> to focus on the source of a programming

object only, the data element <4.2 Size> needs to have the

size that reflects the source. This designates that the

download/bandwidth for a source can be specified accurately

and consistently which is not feasible in IEEE LOM Standard

[8].

The last two proposed changes in the data elements of the

LOM standard are in <9.1 Purpose> and <9.2 Taxon

Path>. These two data elements indicate the classification of

a programming object. The data element <9.1 Purpose>

describes the purposed of the classifying, and the data element

<9.2 Taxon Path> describes the taxonomic path by

defining the path in <9.2.2 Taxon Path> depending on

a specific classification system defined in <9.2.1

Source>. The proposed change in <9.1 Purpose> is to

add the new value "programming language" in its

value space. This new value will add a new purpose to classify

a programming object contained a source code. The new value

"programming language" implies another change in

the data element <9.2 Taxon Path>. If the value of the

data element <9.1 Purpose> is "programming

language", this implies the data element <9.2 Taxon

Path> will indicate the programming language used in the

programming object. An example of classification system

focused on programming objects is ACM Computing

Classification System [9]. Fig. 5 illustrates the use of these

two data elements <9.1 Purpose> and <9.2 Taxon

Path> for a programming object used "Visual C++" as a

programming language.

FIG. 5: An example of the two data elements <9.1 Purpose> & <9.2

Taxon Path> in POM.

C. Eliminating Data Elements

This paper proposed eliminating two data elements from

IEEE LOM Standard to conform to the metadata of

Programming Objects, which are:

 1.6 Coverage

 5.7 Typical Age Range

The first data element proposed to be eliminated from the

LOM standard to suit POM is <1.6 Coverage>. This data

element focuses on the time, culture, geography or region to

which the learning object applies. This data element can not be

applied to programming objects because a programming

object is supposed to be applied at any place or time

depending on the right of using it defined in <6. Rights>.

Another data element proposed to be eliminated from the

LOM standard to suit POM is <5.7 Typical Age

Range>. This data element defines the age of the typical

intended user. Therefore, this data element can not be applied

to any programming object because the programming objects

are not supposed to be limited to any age.

D. Adding Data Elements

This paper proposed adding four new data elements, are

not in IEEE LOM Standard, to conform to the metadata of

Programming Objects, which are:

 5.x Time Unit

 5.x Testing Strategy

 5.x Requirement

 6.x Reuse Type

In the LOM standard, the data element <4.7

Duration> indicates the time that a continuous learning

object takes when played at intended speed. According to this

principle, a new proposed data element may be added to the

category <5 Education> which is <Time Unit>, which

will reveal the quality of a source code. The time unit

designates the number of the statements in a source code. So,

the datatype of this new data element will be Number. Fig. 6

demonstrates a programming object intend to calculate the

sum of the square of three numbers in an array with 5 time

units. The new data element <Time Unit> can be used as a

metric to measure the time and space cost.

1

2

3

4

5

int numbers[3]={2,5,9};

int i;

int sum=0;

for (i=0; i<3; i++)

 sum = sum + number[i]^2;

FIG. 6: An example of using the data element <Time Unit> in POM.

Another quality metric may be added to the category <5

Education> is <5.x Testing Techniques>. This

new data element will focus on the types of the testing

techniques that used to test the source code. Jorgensen [10]

and Pressman [11] indicated many testing techniques. The

testing techniques used in a programming object may benefit

software engineering's users who measure the quality

according to this metric. The source code may be tested using

Programming

Object

2.2 Status

2.2.1 Source: IEEE Std. 1490

2.2.2 Value: Final Design

2.2 Status

2.2.1 Source: IEEE Std. 1012

2.2.2 Value: Testing Phase

9.1 Purpose: Programming Language
9.2 Taxon Path

9.2.1 ID: D, 9.2.2: Software

9.2.1 ID: D.1, 9.2.2: Programming Techniques

9.2.1 ID: D.1.7, 9.2.2: Visual Programming
9.2 Taxon Path

9.2.1 ID: D, 9.2.2: Software

9.2.1 ID: D.3, 9.2.2: Programming Language

9.2.1 ID: D.3.2, 9.2.2: Language Classification

9.2.1 ID: Subject, 9.2.2: Object-Oriented language

9.2.1 ID: Noun, 9.2.2: C++

<Time Unit>

Asian Transactions on Computers (ATC ISSN: 2221-4275) Volume 01 Issue 05

5 ATC-70110058©Asian-Transactions Nov 2011

more than one testing technique; therefore, this data element

may be repeated in the metadata to present all of them. An

example of this data element is shown in Fig. 7.

FIG. 7: An example of the new data element <5.x Testing

Techniques> in POM

The third proposed new data element is <Requirement>

that may add to the category <5 Education>. This data

element needs to be added due to the proposed change in the

description of the category <4 Technical> to focus on the

source of a programming object only. The data element <4.4

Requirement> indicates the requirements of the source of

the programming objects, while the new data element <5.x

Requirement> indicates the requirements to execute the

programming object. Fig. 8 reveals the difference between the

two data elements assuming that a programming object uses

Visual C++ displayed in a browser using Flash.

FIG. 8: An example of the new data element <5.x Requirement> in

POM

The last proposed new data element that may be added to

the category <6. Right> is <Reuse Type>. Frakes,

William, and Terry [12] provided a faceted classification of

reuse definitions shown in Table II that can be used as a value

space for this new data element. The datatype of this data

element is Vocabulary, which means two values will

describe this data element {source, value} as defined in

the LOM standard. An example of this data element for a

source code intends to be for public users shown in Fig. 9.

TABLE II

TYPES OF SOFTWARE REUSE (FRAKES AND TERRY, 1996)

FIG. 9: An example of the new data element <6.x Reuse Type> in POM

IV. CONCLUSION

In this paper, we described how Programming Object

Metadata (POM) could be defined based on the previous IEEE

LOM standard. Due to the similarity between Learning

Objects and Programming Objects in their metadata, this paper

contributed POM using IEEE LOM methodology. By

adopting a formal method such as POM, we feel that software

industry can develop reusable high-quality software at low

costs.

REFERENCES

[1] Osterweil, Leon. (1996), "Strategic Directions in Software Quality."

ACM Comput. Surv. 28(4), 738-50.
[2] Banker, R. D., R. J. Kauffman, and D. Zweig. (1993), "Repository

Evaluation of Software Reuse." IEEE Trans. Softw. Eng. 19(4), 379-89.

[3] Schmidt, Michael. (2000), Implementing the Ieee Software Engineering
Standards. Indianapolis, Ind: Sams.

[4] IEEE. (2003), "IEEE Software Engineering Collection on Cd-Rom".

[5] IEEE. (2005), "Draft Standard for Learning Object Metadata". 2002.
1484.12.1-2002. Septemper 1,

<http://ltsc.ieee.org/wg12/files/LOM_1484_12_1_v1_Final_Draft.pdf>.

[6] Hirata, Kenji, Mamoru Ohta Yoshiyuki Takaoka, and Mitsuru Ikeda.
(2001), "The Meaning of Lom and Lom Authoring Tool on Hrd."

International Conference on Dublin Core and Metadata Applications.

5.x Testing Techniques

5.x.1 Type: Black Box

5.x.2 Technique: Boundary – Worst Case

5.x.1 Type: Black Box

5.x.2 Technique: Decision Table

5.x.1 Type: White Box

5.x.2 Technique: Data Flow-Based – All Uses

4.1 Formant: application/zip

4.1 Formant: application/x-shockwave-flash

4.1 Formant: text/html
4.4 Requirement

4.4.1 OrComposite

4.4.1.1 Type

4.4.1.1.1 Source: LOMv1.0

4.4.1.1.2 Value: browser
4.4.1.2 Name

4.4.1.2.1 Source: LOMv1.0

4.4.1.2.2 Value: netscape communicator

4.4.1.3 Minimum Version: 6.0
4.4.1 OrComposite

4.4.1.1 Type

4.4.1.1.1 Source: LOMv1.0

4.4.1.1.2 Value: browser
4.4.1.2 Name

4.4.1.2.1 Source: LOMv1.0

4.4.1.2.2 Value: netscape communicator

4.4.1.3 Minimum Version: 6.0
5.x Requirement

5.x.1 OrComposite

5.x.1.1 Type

5.x.1.1.1 Source: ACM http://www.acm.org/class/1998

5.x.1.1.2 Value: Software
5.x.1.2 Name

5.x.1.2.1 Source: ACM http://www.acm.org/class/1998

5.x.1.2.2 Value: Visual C++

5.x.1.3 Minimum Version: 2005

6.x Reuse Type

6.x.1 Source: ACM, Vol. 28, No. 2, June 1996 (415-435)

6.x.2 Value: External
6.x Reuse Type

6.x.1 Source: ACM, Vol. 28, No. 2, June 1996 (415-435)

6.x.2 Value: White Box
6.x Reuse Type

6.x.1 Source: ACM, Vol. 28, No. 2, June 1996 (415-435)

6.x.2 Value: Source Code

http://ltsc.ieee.org/wg12/files/LOM_1484_12_1_v1_Final_Draft.pdf%3e

Asian Transactions on Computers (ATC ISSN: 2221-4275) Volume 01 Issue 05

6 ATC-70110058©Asian-Transactions Nov 2011

Tokyo, Japan: National Institute of Informatics. 259-62. Ed. Keizo

Oyama and Hironobu Gotoda (NII).

[7] Adrion, W. Richards, Martha A. Branstad, and John C. Cherniavsky.
(1982), "Validation, Verification, and Testing of Computer Software."

ACM Comput. Surv. 14(2): 159-92.

[8] Fisher, Sue, et al. (2002), "Metadata Guidelines." CanCore Initiative.
Vol. Version 1.1.

[9] ACM. (1998), "Computing Classification System (CCS)".

<http://www.acm.org/class/1998/>.
[10] Jorgensen, Paul C. (2002), Software Testing: A Craftsman's Approach.

2nd edn: CRC Press.
[11] Pressman, Roger S. (2005), Software Engineering: A Practitioner's

Approach. 6th edn. New York, NY: McGraw-Hill.

[12] Frakes, William, and Carol Terry. (1996), "Software Reuse: Metrics and
Models." ACM Comput. Surv. 28(2), 415-35.

Daniyal Alghazzawi has completed his Ph.D in

Computer Science from University of Kansas in 2007,

Master of Science in Teaching & Leadership in 2004

and Master of Science in Computer Science in 2003

from University of Kansas. He has worked as Web
Programmer at ALTec (Advanced Learning

Technologies) . Dr. Daniyal is currently Chairman of

the Information Systems Department, Faculty of
Computing and Information Technology, King

Abdulaziz University. His research interest includes

Smart e-Learning, Information Security, and Video
Processing.

http://www.acm.org/class/1998/%3e

Asian Transactions on Computers (ATC ISSN: 2221-4275) Volume 01 Issue 05

7 ATC-70110058©Asian-Transactions Nov 2011

1. General

1.2 Title 1.1 Identifier 1.3 Language 1.5 Keyword 1.4 Description 1.6 Coverage 1.7 Structure 1.8 Aggregation Level

1.1.2 Keyword 1.1.1 Description

LOM v1.0

Base Schema

2. Life Cycle

2.3 Contribute 2.1 Version 2.2 Status

2.3.2 Entity 2.3.1 Role 2.3.3 Date

3. Meta-Metadata

3.3 Metadata Schema 3.1 Identifier 3.2 Contribute

3.2.2 Entity 3.2.1 Role 3.2.3 Date

3.4 Language

3.1.2 Entry 3.1.1 Catalog

4. Technical

4.2 Size 4.1 Format 4.3 Location 4.5 Installation Remarks 4.4 Requirement 4.6 Other Platform Requirement 4.7 Duration

4.4.1 OrComposite

4.4.1.2 Name 4.4.1.1 Type 4.4.1.3 Minimum Version 4.4.1.3 Maximum Version

5. Educational

5.1 Interactivity Type

5.2 Learning Resource Type

5.5 Intended End User Role 5.3 Interactivity Level 5.7 Typical Age Range 5.9 Typical Learning Time

5.4 Semantic Density 5.6 Context 5.8 Difficulty 5.10 Description

5.11 Language

APPENDIX A: IEEE LOM Data Elements

Asian Transactions on Computers (ATC ISSN: 2221-4275) Volume 01 Issue 05

8 ATC-70110058©Asian-Transactions Nov 2011

6. Rights

6.3 Description 6.1 Cost 6.2 Copyright and Other Restrictions

7. Relation

7.2 Resource 7.1 Kind

7.2.2 Description 7.2.1 Identifier

7.2.1.1 Catalog 7.2.1.2 Entry

8. Annotation

8.3 Description 8.1 Entity 8.2 Date

9. Classification

9.2 Taxon Path 9.1 Purpose

9.2.2 Taxon 9.2.1 Source

9.2.2.1 Id 9.2.2.2 Entry

9.4 Keyword 9.3 Description

Asian Transactions on Computers (ATC ISSN: 2221-4275) Volume 01 Issue 05

9 ATC-70110058©Asian-Transactions Nov 2011

APPENDIX B: A POM in XML Format

<general>

 <identifier>

 <catalog>URI</catalog>

 <entry>http://hdkaau.com/courses/cs305/lessons/p/downloads/animals.zip</entry>

 </identifier>

 <title>

 <string language="en">Create a class </string>

 <string language="ar">Class إوشاء</string>

 </title>

 <language>en</language>

 <description>

 <string language="en">In this example program, you will learn how to create a

 class, instantiate objects from the class, and access member functions and

 attributes of the class.

 </string>

 <string language="ar"> وعمم Class انبروامج انمعروض في ٌذا انمثال سيعهمك عريقت إوشاء

function أو متغير مىً كما سيعهمك عريقت عهب . مىً object

 </string>

 </description>

 <keyword>

 <string language="en">Class</string>

 </keyword>

 <structure>

 <source>LOMv1.0</source>

 <value>collection</value>

 </structure>

 <aggregationLevel>

 <source>LOMv1.0</source>

 <value>2</value>

 </aggregationLevel>

</general>

<lifeCycle>

 <version>

 <string language="en">1.0</string>

 </version>

 <status>

 <source>IEEE Std. 1012</source>

 <value>Design Phase</value>

 </status>

 <contribute>

 <role>

 <source>LOMv1.0</source>

 <value>author</value>

 </role>

 <entity>

 BEGIN:VCARD

 VERSION:3.0

 N:Templeman;Julian;

 FN:Julian Templeman

 ORG: Microsoft .NET. Redmond

 END:VCARD

 </entity>

 <entity>

 BEGIN:VCARD

 VERSION:3.0

 N:Smith;Mary;

 FN:Mary Smith

 ORG: Microsoft .NET. Redmond

Asian Transactions on Computers (ATC ISSN: 2221-4275) Volume 01 Issue 05

10 ATC-70110058©Asian-Transactions Nov 2011

 END:VCARD

 </entity>

 <date>

 <dateTime>2002</dateTime>

 </date>

 </contribute>

 <contribute>

 <role>

 <source>LOMv1.0</source>

 <value>editor</value>

 </role>

 <entity>

 BEGIN:VCARD

 VERSION:3.0

 N:Alghazzawi;Daniyal;M.;Mr.;

 FN:Mr. Daniyal M. Alghazzawi

 ORG:King Abdulaziz University

 END:VCARD

 </entity>

 <date>

 <dateTime>2003-07</dateTime>

 </date>

 </contribute>

</lifeCycle>

<metaMetadata>

 <identifier>

 <catalog>URI</catalog>

 <entry>www.kau.edu.sa</entry>

 </identifier>

 <contribute>

 <role>

 <source>LOMv1.0</source>

 <value>creator</value>

 </role>

 <entity>

 BEGIN:VCARD

 VERSION:3.0

 N:Alghazzawi;Daniyal;M.;Mr.;

 FN:Mr. Daniyal M. Alghazzawi

 ORG:King Abdulaziz University

 END:VCARD

 </entity>

 <date>

 <dateTime>2005-10-01</dateTime>

 </date>

 </contribute>

 <contribute>

 <role>

 <source>LOMv1.0</source>

 <value>validator</value>

 </role>

 <entity>

 BEGIN:VCARD

 VERSION:3.0

 N:Gauch;John;Dr.;

 FN:Dr. John Gauch

 ORG:None

 END:VCARD

 </entity>

 <date>

 <dateTime>2005-11-01</dateTime>

 </date>

Asian Transactions on Computers (ATC ISSN: 2221-4275) Volume 01 Issue 05

11 ATC-70110058©Asian-Transactions Nov 2011

 </contribute>

 <contribute>

 <role>

 <source>LOMv1.0</source>

 <value>validator</value>

 </role>

 <entity>

 BEGIN:VCARD

 VERSION:3.0

 N: Saiedian; Hossein;Dr.;

 FN:Dr. Hossein Saiedian

 ORG:None

 END:VCARD

 </entity>

 <date>

 <dateTime>2003-11-30</dateTime>

 </date>

 </contribute>

 <metadataSchema>LOMv1.0</metadataSchema>

 <language>en</language>

</metaMetadata>

<technical>

 <format>application/x-shockwave-flash</format>

 <format>text/html</format>

 <size>9099~20000</size>

 <location>http://hdkaau.com/courses/cs305/lessons/program/prog2/index.htm</location>

 <requirement>

 <orComposite>

 <type>

 <source>LOMv1.0</source>

 <value>browser</value>

 </type>

 <name>

 <source>LOMv1.0</source>

 <value>netscape communicator</value>

 </name>

 <minimumVersion>6.0</minimumVersion>

 <maximumVersion/>

 <orComposite>

 <type>

 <source>LOMv1.0</source>

 <value>browser</value>

 </type>

 <name>

 <source>LOMv1.0</source>

 <value>ms-internet explorer</value>

 </name>

 <minimumVersion>5.5</minimumVersion>

 <maximumVersion/>

 </orComposite>

 </requirement>

 <installationRemarks>

 <string language="en">Unzip the zip file and launch index.html in your web

 browser.</string>

 <string language="ar"> مه index.html ثم أفتح انمهف zip فك ضغظ انمهف انمضغوط بواسغت

 <string/>.متصفحك

 </installationRemarks>

 <otherPlatformRequirements>

 <string language="en">Flash 5.0 or greater</string>

 </otherPlatformRequirements>

 <duration/>

</technical>

Asian Transactions on Computers (ATC ISSN: 2221-4275) Volume 01 Issue 05

12 ATC-70110058©Asian-Transactions Nov 2011

<Educational>

 <interactivityType>

 <source>LOMv1.0</source>

 <value>mixed</value>

 </interactivityType>

 <learningResourceType>

 <source>LOMv1.0</source>

 <value>narrative text</value>

 </learningResourceType>

 <interactivityLevel>

 <source>LOMv1.0</source>

 <value>high</value>

 </interactivityLevel>

 <semanticDensity>

 <source>LOMv1.0</source>

 <value>very low</value>

 </semanticDensity>

 <intendedEndUserRole>

 <source>LOMv1.0</source>

 <value>learner</value>

 </intendedEndUserRole>

 <intendedEndUserRole>

 <source>LOMv1.0</source>

 <value>manager</value>

 </intendedEndUserRole>

 <context>

 <source>LOMv1.0</source>

 <value>training</value>

 </context>

 <difficulty>

 <source>LOMv1.0</source>

 <value>very difficult</value>

 </difficulty>

 <typicalLearningTime/>

 <timeUnit>1</timeUnit>

 <description>

 <string language="eng">This resource can be very effective when utilized as a

 generator for discussion in a grade two classroom. However, it can also be

 used for individual writing assignments for grade 4 students, or for grade 5

 students who are challenged.</string>

 </description>

 <language>en</language>

 <requirement>

 <orComposite>

 <type>

 <source>ACM http://www.acm.org/class/1998</source>

 <value>Software</value>

 </type>

 <name>

 <source>ACM http://www.acm.org/class/1998</source>

 <value>Visual C++</value>

 </name>

 <minimumVersion>6.0</minimumVersion>

 <maximumVersion/>

 </orComposite>

 </requirement>

</Educational>

<right>

 <cost>

 <source>LOMv1.0</source>

 <value>no</value>

Asian Transactions on Computers (ATC ISSN: 2221-4275) Volume 01 Issue 05

13 ATC-70110058©Asian-Transactions Nov 2011

 </cost>

 <copyrightAndOtherRestrictions>

 <source>LOMv1.0</source>

 <value>yes</value>

 </copyrightAndOtherRestrictions>

 <reuseType>

 <source>ACM Computer Surveys, Vol. 28, No. 2, June 1996 (415-435)</source>

 <value>External</value>

 </reuseType>

 <reuseType>

 <source>ACM Computer Surveys, Vol. 28, No. 2, June 1996 (415-435)</source>

 <value>White Box</value>

 </reuseType>

 <reuseType>

 <source>ACM Computer Surveys, Vol. 28, No. 2, June 1996 (415-435)</source>

 <value>Source Code</value>

 </reuseType>

 <description>

 <string language="en">Read the copyright section in the website.</string>

 <string language="ar">أقرأ حقوق انىسخ انتي في انموقع</string>

 </description>

</right>

<relation>

 <kind>

 <source>LOMv1.0</source>

 <value>ispartof</value>

 </kind>

 <resource>

 <identifier>

 <catalog>URI</catalog>

 <entry>http://msdn.microsoft.com/library/default.asp?url=/library/en-

 us/cpref/html/frlrfsystemgcmemberstopic.asp</entry>

 </identifier>

 <description>

 <string language="en">The class is a member of GC Class.</string>

 <string language="ar">GC Class يكون عضو في class ٌذا ال</string>

 </description>

 </resource>

</relation>

<annotation>

 <entity>

 BEGIN:VCARD

 VERSION:3.0

 N:Alghazzawi;Daniyal;M.;Mr.;

 FN:Mr. Daniyal M. Alghazzawi

 ORG:King Abdulaziz University

 END:VCARD

 </entity>

 <date>

 <dateTime>2004-01-15T12:00:00.0</dateTime>

 </date>

 <description>

 <string language="en">I highly recommend the Web page for any novice learning

 class.</string>

 <string language="ar">classأوا أوصح بشدة ٌذي صفحت الإوتروت نهمبتدئيه في ال</string>

 </description>

</annotation>

<classification>

 <purpose>

 <source>LOMv1.0</source>

Asian Transactions on Computers (ATC ISSN: 2221-4275) Volume 01 Issue 05

14 ATC-70110058©Asian-Transactions Nov 2011

 <value>programming language</value>

 </purpose>

 <taxonpath>

 <source>

 <string language="en">ACM http://www.acm.org/class/1998</string>

 </source>

 <taxon>

 <entry>

 <id>D</id>

 <string language="en">Software</string>

 </entry>

 </taxon>

 <taxon>

 <entry>

 <id>D.3</id>

 <string language="en">Programming Languages</string>

 </entry>

 </taxon>

 <taxon>

 <entry>

 <id>D.3.2</id>

 <string language="en">Language Classification</string>

 </entry>

 </taxon>

 <taxon>

 <entry>

 <id>Subject</id>

 <string language="en">Object-oriented languages</string>

 </entry>

 </taxon>

 <taxon>

 <entry>

 <id>Noun</id>

 <string language="en">C++</string>

 </entry>

 </taxon>

 </taxonpath>

 <taxonpath>

 <source>

 <string language="en">ACM http://www.acm.org/class/1998</string>

 </source>

 <taxon>

 <entry>

 <id>D.1</id>

 <string language="en">Programming Techniques</string>

 </entry>

 </taxon>

 <taxon>

 <entry>

 <id>D.1.7</id>

 <string language="en">Visual Programming</string>

 </entry>

 </taxon>

 </taxonpath>

 <keyword>

 <string language="en">class</string>

 </keyword>

 <keyword>

 <string language="en">object-oriented</string>

 </keyword>

</classification>

