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Chapter I 

 

1. Introduction 

 

 

Lambert problem of space researches is concerned with the determination of 

an orbit from two position vectors and the time of flight( Danby 1988 ). It has 

very important applications in the areas of rendezvous, targeting, guidance 

(Noton 1998 ) and interplanetary missions( Eagle 1991 ). 

Solutions to Lambert’s problem abound in the literature, as they did even in 

Lambert’s time shortly after his original formulation in 1716. Examples are 

Lambert’s original geometric formulation, which provides equations to 

determine the minimum-energy orbit, and the original Gaussian formulation, 

which gives geometrical insight into the problem.  

Up to the year 1965, a fairly comprehensive list of references on Lambert’s 

problem are given in references (Escobal 1965), (Herrick 1971) and( Battin 

1964 ). (Lancaster and Blanchard 1969) also( Mansfield 1989) established 

unified forms of Lambert’s problem, (Gooding 1990) developed a procedure 

for the solution, and in (1995), (Thorne and Bain 1995) developed a direct 

solution using series inversion technique.Recently (Sharaf 2003) developed 

an  algorithm for the universal Lambert's problem based on  iterative scheme 

that could be made convrage for all coin motion. 
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Each of the above methods is characterized primarily by: (1) a particular form 

of the time of flight equation and, (2) a particular independent variable to be 

used in an iteration algorithm to determine the orbital elements. 

One of the most compact and computational efficient form of Lambert’s 

problem is that of Battin (cited in reference(Bond and Allman,1996). In this 

form, the time of flight equation is universal (i.e., includes elliptic, parabolic, 

and hyperbolic orbits) as a well-behaved function of a single, physically 

significant independent variable. 

       The present  thesis is devoted for the study of  the boundary value problem  in 

        its universal form,and it  comprise two parts      

       In the first part, the properties of the orbital boundary value problem are 

presented including terminal velocity vectors with different coordinates and the 

minimum energy orbit with it's various orbital elements. The fundamental ellipse is 

discussed, together with the various forms of its parameters. All of these properties 

are proved mathematically and illustrated geometrically.  

The second part of the thesis is devoted to the solution of Lambert problem  for   

different conic sections .In this respect we considered : 

 "Gauss Method": for elliptic orbits, the equations of  the method together 

with  the  its computational algorithm are presented . 

 "The iterative method" : for elliptic orbits ,by which the values of semi 

major axis and each Lagrange coefficients "f" and "g",  are computed so 

as to determine the initial velocity 1v . 

Also some methods for solving universal Lambert problem are discussed, including: 

 "Linear terminal velocity constrain": for which, the basic equations, 

computational algorithms and some numerical applications are given. 
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 "Computational algorithms" to solve universal Lambert problem, and,the 

basic equations, some numerical applications are given. 

 "Battin's method": for which the basic equations and computational 

algorithms are given in full details .In addition, we implement the method to 

compute the geometric characteristics of the boundary value problem 

(demonstrated in the first part). Finally we made use of  these 

computedgeometric characteristics as criteria for accuracy checks of the  

calculations. The algorithms is applied to 14 orbits of different eccentricity 

,the numerical results are extremely accurate. 
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Chapter II 

 

Basic Topics  

 

 

 
In this chapter, some topics will be given due to their important roles in the analysis 

of the subsequent chapters 

 

2-1Basic topicsand number theory 

 

      2-1-1 Continued fraction 

In fact, continued fraction expansions are, generally far more efficient tools for 

evaluating the classical functions than the more familiar infinite power series. Their 

convergence is typically faster and more extensive than the series. Due to the importance 

of accurate evaluations of the space orbital maneuvers   and the efficiency of continued 

fractions, we purpose to use them as the computational tools for evaluating the  included 

functions . 

2-1-2 Top- Down Continued  Fraction Evaluation 

There are several methods available for the evaluation of continued fraction. 

Traditionally, the fraction was either computed from the bottom up, or the numerator and 

denominator of the nth convergent were accumulated separately with three-term 

recurrence formulae. The draw back of  the first method is, obviously, having to decide 

far down the fraction to being in order to ensure convergence. The draw back to the 
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second method is that the numerator and denominator rapidly overflow numerically even though 

their ratio tends to a well defined limit. Thus, it  is clear that an algorithm that works from top down 

while avoiding numerical difficulties would be ideal from a programming standpoint .  

Gautschi (1967) proposed very concise algorithm to evaluate continued fraction from the top 

down and may be summarized as follows. If the continued fraction is written as: 

 








3

3

2

2
1

1

d

n
d

n
d

n
c  

then initialize the following parameters 

111

111

1

/dnc

,/dnb

1,a







 

and iterate ( k=1,2,…) according to : 

k

1kk

1k

1k

a 
dd

n
1

1
a


















 

  ,b 1ab k1k1k    

1kk1k bcc   . 

In the limit, the c sequence converges to the value of the continued fraction. 

Continued fraction method was used in many problems in astrophysics (e.g. Sharaf, 2006,Sharaf  

et.al 2004) as well as in special functions of  astrodynamics (e.g.Sharaf and Banajh  

2001,Sharaf,and Najmuldeen,2001). 
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2-2Basic topics from space dynamics 

 

2-2-1 Initial value problems 

 

The initial value problem is: Given initial conditions )t( 00 rr   and  )t( 00 vv   for the position 

and velocity vectors at time 0t ,and given a second time t ,find )t(r and )t(v 

Basic  relations between position and time 2-2-2 

The basic  relations between position and time for the different conic sections as: 

 

   1e     For elliptic orbits    ;                   esinEEM    

 

                         f
2

1
 tan3f

2

1
tanM 3       ;    1e    For parabolic orbits                                        

     

 

HesinhHM               ;   1e  For hyperbolic orbits 

 

 

The first equation is known as Keplar's equation, the second equation  as Barker's equation, 

while the third equation  is the hyperbolic form of Kepler's equation. The angle f is the  true 

anomaly ,E and H are respectively ,the elliptic eccentric anomaly and the hyperbolic eccentric 

anomaly. The mean anomaly M is related to the time t for the respect orbits by: 

τ)(t
a

μ
M

3
 , 

τ)(t
p

μ
6M

3
  , 

τ)(t
a)(

μ
M

3



 , 
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Where a, τ  is time are respectively the semi-major axis of the orbit  and the time of pericentre 

passeg , where  p is, the semi-latus rectum of the orbit(or simply the parameter). 

Two – body formulations 3-2-2 

The equation describing the relative motion of the two bodies of masses 1m  and 2m in 

rectangular coordinates is : 

 

,
r

μ

dt

d
3

rr
v

                                                       (2-1) 

 

where μ  is the gravitational parameter (universal gravitational constant times the sum of the two 

masses) r and v  are the position and velocity vectors respectively ,given in components as : 

,zyx zyx iiir  

 

zyx zyx iiiv   , 

,, yx ii  and zi are the unit vectors along the coordinate axes x, y and z respectively and 

  .zyxr
2/1222  

 

Equation (2-1) is unchanged if we replace r with -r .  Thus Equation (2-1) gives the motion of 

the body of mass 2m relative to the body of the mass 1m , or the motion of 1m  relative to 2m .  

Also if we replace t with – t, Equation (2-1) is unchanged. 

 At any time, r  and v  can be expressed as: 

 

,p Te L iir                                                        (2-2) 
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p Te L iiv                                                         ,   (2-3)  

 

where  TL, are the pericentre coordinates of one of the bodies in its orbit about the other body 

and  T,L  are their time derivatives.  These coordinates are of different forms(Battin 1999) for 

the different types (elliptic, parabolic, hyperbolic ) of the two body motion and are not needed to 

be specified here.  The unit vectors 
pe , ii and hi are selected such that, ei and pi  in the body’s 

own orbital plane with ei in the direction of pericentre, while pi and hi  are chosen to make the 

coordinate system right-handed. 

Among the integrals of the two-body problem are the conservation of angular momentum vector 

h where, 

h   vriii  pepμ pμ h                                      (2-4) 

 

and the energy integral 

. 
a

1

r

2
μ v2









                                             (2-5) 

 

From Equations (2-2), (2-3) and (2-4) we get : 

 

pμ TLTL   .                                              (2-6) 

 

 

2-2-4  Lagrange’s fundamental invariants 
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The basic equations governing the relative motion of two bodies are nonlinear [see Equation (2-

1)] so that , priori  ,we should not expect closed form expressions  for the position and velocity 

vectors r  and v  to exist as time dependent quantities. Under any circumstances, though, power 

series developments may be obtained. Indeed, the coefficients in Taylor series expansion : 

        ....
dt

d
tt

3!

1

dt

d
tt

2!

1

dt

d
ttt

0

3

3
3

0

0

2

2
2

0

0

00 
rrr

rr 

 can be found from the Equation of motion (2-1) and its higher derivatives. 

Successive differentiation of Equation (2-1) involves higher derivatives of the quantity 3rμ /  ,a 

calculation that fortunately, can be expedited in a convenient and quite interesting manner. For, 

if we define : 

  

 r μ   ε 3  

  

TThheenn    

dt

dr

r

1
ε3

dt

dr

r

μ
3

dt

dε
4

.. 

 

Now define 

  

r  r
dt

dr

r

1
λ  ..  

  

SSiinnccee  

  
r r, r,v  

  

tthheenn      λ   ccoouulldd  bbee  wwrriitttteenn  aass::  
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.,
r

1

r

r
λ

2
 vr


  

  

FFrroomm  EEqquuaattiioonn  (2-1)  wwee  ggeett::  

  

2

3 3

μ μ μ
,  ,  r ,

r r r
         r r r r  

  

ssiinnccee  

  
2

2

3 2

r r
, λ ,

r r
   r v  

tthheenn  

  

.λ2ε
r

v
λ2

r

μ

r

v

dt

dλ 2

2

2
2

32

2

  

  

FFiinnaallllyy  ,,wwee  ddeeffiinnee  

  

 vv ,
r

1

r

v
Ψ

22

2

,,  

ssoo  

  

  
2 2

2 3 2 3

d 2 2v 2 2v
v,v r r,r r

dt r r r r


        ..  

  

From Equation (2-1) we have: 

λ
r

μ

r

1

r

μ

r

μ
23

 v,rr,rr,r  ,,  

  

  

aallssoo  

  

λΨ
r

r

r

v
r

r

v
2

2

3

2




  

tthheenn    

  

)(ε λ -2λ Ψ 2-λ ε -2 λ Ψ 2
r

μλ 2

dt

dΨ
3

 
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The term fundamental invariants has been used for Ψ,λ,ε - they are “invariants”  because  they 

are independent of the selected coordinate system and "fundamental" because they form a closed 

set under the operation of time differentiation .Thus ,to calculate the various derivatives  of the 

position vector r , we have successively differentiate : 

r
v

v
r

ε
dt

d
;

dt

d
 

 using the relations: 

 Ψελ2
dt

dΨ
    ;λ2εΨ

dt

dλ
    λ;ε3

dt

dε 2   

  

wwhheerree    tthhee  qquuaannttiittiieess  Ψλ,ε,  are defined as: 

 

 r μ   ε 3     ;;               vr ,
r

1
λ

2
  ;     vv ,

r

1
Ψ

2
. 

 

IInn  tthhiiss    mmaannnneerr  ,,wwee  oobbttaaiinn::  

  

vr

rr

vr

ελε3

ε













  

  

 

,   vrr
iv λε6ε2Ψε3λε15 22   

  

  

indicating that the position vector r at any time t can be represented in terms of the  

 

position and velocity  vectors 0r  and 0v  at time 0t  in the form : 

 

 

  
      00 rrr tGtFt                                                        (2-7-1) 

2-7-2)   )                            t 0 tt F t G t  0r r r 
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2-2-5 Universal formulations for conic orbits 

Importance of the universal formulations 

During space mission  all types of the two body motion (elliptic,parabolic,or hyperbolic) appear. 

For examples the escape from the departure planet and the capture by the target planet involve 

hyperbolic orbits, while the intermediate stage of the mission  commonly  depicted as a 

heliocentric ellipse ,may also be heliocentric parabola or hyperbola. In addition, in some 

systems, the type of an orbit is occasionally changed by perturbing forces during finite interval of 

time. Thus far we have been obliged to use different functional representations for motion 

depending upon the energy state (elliptic, parabolic, or hyperbolic) and a simulation code must 

then contain branching to handle a switch from one state to another .In cases where this 

switching is not smooth, branching can occur many times during a single integration time-step 

causing some numerical “chatter”. Consequently ,universal formulations are desperately needed 

so that ,orbit predictions will be free of the troubles ,since a single functional representation 

suffices to describe all possible states.  

Formulations 

It is convenient to write α  for the reciprocal of the semi-major axis, so that : 

μ

v

r

2

a

1
α

2

  ,                                                   

where   r r  and   v r  .Depending on the sign of α ,or the value of the eccentricity e,the 

type of the orbit is determined such as: 
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0 (or e 1)     for elliptic orbits,

α 0 ( or e 1)     for parabolic orbits,

0 ( or e 1)     for hyperbolic orbits.




  



 

Different formulations for various two body orbits can be unified by using : 

A-time transformation formula , 

B- new family of transcendental functions. 

Each of these points will be considered as follows. 

A-Time transformation formula  

Regarding this point ,we shall use Sundman's (Battin 1999) time transformation defined by: 

r
dχ

dt
 μ  , 

where χ  is to be considered as  a new independent variable –a kind of generalized anomaly. For 

the initial time 0t  and a second time t ,the variable χ  can be related to the classical anomalies at 

these times by: 

 

 

 



























 0.α if                       HH a

0,α if           f
2

1
tanf

2

1
tan p

0,α if                          EE  a

χ

0

0

0





 

It could be shown that (Battin 1999) : 

,,
μ

1
σ

dχ

dr
 vr                                                   (2-8) 

                      

,
dχ

dσ
r α1

dχ

rd
2

2

                                                   (2-9)  
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,
μ

r

dχ

d
v

r
                                              (2-10) 

                                           

,
r

1

μ

σ

dχ

d
2

2

rv
r

                                                 (2-11) 

                                      

,0σ α
dχ

σd
2

2

                                                      (2-12) 

                    

0,
dχ

dr
 α

dχ

rd
3

3

                         (2-13) 

 

                                 

0,
dχ

td
 α

dχ

td
2

2

4

4

                                                      (2-14) 

                              

0
rr


dχ

d
α

dχ

d
3

3

.                                                     (2-15) 

B- The new family of transcendental functions 

Regarding the second point mentioned above ,we shall consider for the family of  transcendental 

functions, those defined by: 

 

 
 ! 2kn

χ α
1)(χα) ; χ (U

k2

0k

kn

n


 




 , (2-16) 

what concerns us in the subsequent analysis are the following relations satisfied by the U's 

functions: 

 

n!

χ
 UαU

n

2nn    ,                                         (2-17) 
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m,0,1,2,n0; 
dχ

Ud
α

dχ

Ud
1m

n

1m

1m

n

1m










,                (2-18) 

 

       1n     00   U;     10U n0  .                            (2-19) 

The relations of the functions 1,2,3,0j  ) α ; χ (U j   to the elementary functions are given 

as: 

 

 



















0.α if              χαcosh

0,α if                   χαcos

0,α if                                1

α); (χU0




                        (2-20) 

 

 

 



















0.α if               α  χαsinh

0,α if                    α  χαsin 

0,α if                                        χ

α);  (χU

/

/1




             (2-21) 

  

  






















0.α if          ) (-α   1 χα-cosh 

0,α if                   α    χα cos-1

0,α if                                       χ
2

1

α);  (χU

/

/

2

2




             (2-22) 
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  

  






















0.α if     )α(-α   χα χα-sinh 

0,α if                 αα     χαsin -χα

0,α if                                                   χ
6

1

α);  (χU

/

/

3

3




                             (2-23) 

The functions n10 U,,U,U   are linearly independent. Finally we have: 

1,2,n      ;    U
dχ

dU
1n

n  
                              (2-24) 

        . Uα
dχ

dU
1

0                                               (2-25)    

Orbital parameters in terms of the U’s functions 6-2-2  

 

I- σ  in terms of the U’s functions 

 

Let 1m   in Equation (2-15) we get : 

0,1n  ;  0αU
dχ

Ud
n2

n

2

  .                                                                            (2-26) 

From this equation ,Equation (2-12) and the fact act that 10  Uand U  are linearly independent we 

get: 

1100 UAUAσ  ,                                                  (2-27) 

where A’s are constants. 

From Equations (2-9),(2-19) and (2-27) we get at 0χ  , 

00 σA   .                                            (2-28-1) 
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From Equations (2-19) and(2-27) we get on using Equations (2-24) and (2-25) that: 

 



0χat 

UA Uα Ar α1 0110 

01 r α1A  .                                                         (2-28-2) 

 

From Equations (2-28) ,Equation (2-27) becomes : 

  1000  Ur α1Uσ    ,                                         (2-29) 

which is the required equation of σ in terms of the U’s functions 

 

 

 

 

II- r  in terms of the U’s functions 

 

Let 2m   in Equation (2-18) we get : 

0,1,2.n  ;  0
dχ

dU
α

dχ

Ud n

3

n

3

                                      (2-30) 

From this equation ,Equation (2-13) and the fact act that 210  Uand U, U  are linearly independent 

we get: 

221100 UBUBUBr  ,                                                     (2-31)        

where B’s are constants. 

From Equations (2-19) and (2-31) we get at 0χ  , 

00 rB   .                                                                            (2-32-1) 

From Equations (2-8) and (2-31) we get on using Equations (2-24) and (2-25) that: 

 



0χat  

UBUB Uα r 120110 

01 σ B  .                                                                            (2-32-2) 
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From Equations (2-9) and (2-31) we get on using Equations (2-24) and (2-25) that :  

 



0χat  

UBUB α Uα rr α1 021100 

 200 B r αr α1 

1 B2  .                                                                             (2-32-3) 

From Equations (2-32) ,Equation (2-31) becomes : 

21000 UUUrr   ,                                           (2-33) 

which is the required equation of  rin terms of the U’s functions 

 

 

 

III-Universal Kepler’s equation  

 

Let 3m   in Equation (2-18) we get : 

0,1,2,3n  ;  0
dχ

Ud
α

dχ

Ud
2

n

2

4

n

4

  . 

From this equation ,Equation (2-14) and the fact act that 3210  Uand  U, U, U  are linearly 

independent we can write : 

  332211000 UγUγUγUγttμ  ,                        (2-34) 

where γ ’s are constants. 

From Equations (2-19) and (2-34) we get at 0χ  ,or 0tt  

0γ 0   .                                                                            (2-35-1) 

From Sundman's and Equation (2-34) we get on using Equations (2-24) and (2-25) that: 

 



0χat  

UγUγUγ Uα γr
dχ

dt
μ 23120110 

01 r γ  .                                            (2-35-2) 



 

19 

From Equations (2-8) and 2-34) we get on using Equations (2-24) and (2-25) that :  

 



0χat  

UγUγ Uα γ Uα  γ
dχ

dr

dχ

td
μ 130211002

2

 

 200 γ α  γ 

02 σ γ    .                                                        (2-35-3) 

From Equations (2-9) and(2-34) we get on using Equations (2-24) and (2-25) that :  

 



0χat  

Uγ Uα γ Uα γ Uα γr α1
dχ

dσ
0312011

2

0 

 310 γ α γr α1 

1 γ 3   .                                              (2-35-4) 

From Equations (2-35) ,Equation (2-34) becomes : 

  320100 UUUrttμ   .                               (2-36)  

 

This equation is the universal Kepler’sequation 

 

IV-Lagrangian coefficients 

 

From Equations (2-30) ,Equation (2-15) and  the fact act that   Uand U, U 210  are linearly 

independent we can write : 

221100 UUU aaar  ,                                                          (2-37) 

where a’s are vector constants. 

 

 

From Equations (2-19) and (2-37) we get at 0χ  , 

00 ra   .                                                                            (2-38-1) 
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Differentiating Equation (2-37) and then using Equations (2-10) ,(2-24) and(2-25) we get : 

,UU Uα
μ

r
120101 aaav                                                         (2-39) 

from which we get: 

0

0

1
μ

r
va   .                                                                           (2-38-2) 

Differentiating Equation (2-37)  twice and then using Equation (2-11)  we get : 

201100 UαUαU 
r

1

μ

σ
aaarv   ,                                 (2-40) 

from which we get: 

00

0

0

0

2  
r

1

μ
rrva 


  .                                      (2-38-3) 

Using Equations (2-38) into Equation (2-37) we get: 














 00

0

0

0

210

0

00  α
r

1

μ

σ
UU

μ

r
U rrvvrr , 

which can be written as : 

00 G  F vrr  , 

where  

0 2 0 2 2

0 0

1 1 Using  Equation(2-17) with n 0
F U U U α U U

r r

  

       
 

 

2

0

U
r

1
1F  , 

2

0

1

0 U
μ

U
μ

r
G


 . 
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Now using Equations (2-38) into Equation (2-39) we get: 


























 00

0

0

0

10

00

01  α
r

1

μ
U

μ

Ur
αU

r

μ
rrvvrv


, 

which can  be written as: 

0t0t GF vrv  , 

 

where 

1

0

1

1

0

1

t U
rr

μ

r

μ αU
U

rr

μ

r

μ Uα
F  , 

 0 0 1 0
t 0 0 1 0

μ r U U σ 1 Using  Equation(2-33)
G  r U U σ

r rμ μ

  
     

  

 

2t U
r

1
1G  . 

Now, collecting the above equations we get for the universal initial value problem ,the 

formulations: 

00 G F vrr                        ;                      0t0t GF vrv  

 

2

0

U
r

1
1F   ,                         ;                  2

0

1

0 U
μ

U
μ

r
G


 , 

 

1

0

t U
rr

μ
F   ,                         ;                   2t U

r

1
1G   , 
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21000 UUUrr   . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


